Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Качество электроэнергии в системах электроснабж...docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
70.58 Кб
Скачать

Качество электроэнергии в системах электроснабжения объектов

1 Указать основные режимные параметры

Приемники электроэнергии (ПЭ) и аппараты, присоединенные к электрическим сетям, предназначены для работы при определенных номинальных параметрах: номинальной частоте переменного тока, номинальном напряжении, номинальном токе и т. п. Долгое время основными режимными параметрами, определяющими качество элек­трической энергии, считались значение частоты в электрической си­стеме и уровни напряжения в узлах сети. Однако по мере внедрения в технологические производственные процессы электропотребителей, обладающих нелинейными вольтамперными характеристиками, все чаще приходилось учитывать возможные нарушения симметрии, си­нусоидальности формы кривой напряжения в трехфазных сетях.

2 Перечислить основные и дополнительные качества электро энергии

ГОСТ 13109-99 устанавливает показатели и нормы качества электрической энергии (КЭ) в электрических сетях систем электро­снабжения общего назначения переменного трехфазного и одно­фазного тока частотой 50 Гц в точках, к которым присоединяются электрические сети, находящиеся в собственности различных по­требителей, или приемники электрической энергии (точки общего присоединения - ТОП).

Этот ГОСТ устанавливает 11 основных показателей качества электроэнергии (ПКЭ):

  1. отклонение частоты δf;

  2. установившееся отклонение напряжения δUу;

  3. размах изменения напряжения δU1

  4. дозу фликера (мерцания или колебания) Рt;

  5. коэффициент искажения синусоидальности кривой напряже­ния КU

  6. коэффициент п-й гармонической составляющей напряжения КU(n)

  7. коэффициент несимметрии напряжений по обратной последовательности К2U',

  8. коэффициент несимметрии напряжений по нулевой последо­вательности К0U;

  9. глубину и длительность провала напряжения δUn , ∆tn;

  10. импульсное напряжение Uимп;

  11. коэффициент временного перенапряжения КлерU.

При определении значений некоторых показателей КЭ исполь­зуют следующие вспомогательные параметры электрической энер­гии:

1) частоту повторения изменений напряжения FδUt

2) интервал между изменениями напряжения ∆ti, ti + 1

3) глубину провала напряжения δUn;

4) частота появления провалов напряжения Fn.

5) длительность импульса по уровню 0,5 его амплитуды tимп0,5;

6) длительность временного перенапряжения tпер U

Установлены два вида норм ПКЭ: нормально допустимые (норм.) и предельно допустимые (пред.),

3 Влияние откл на работу эу

Отклонение напряжения характеризуется показателем установив­шегося отклонения текущего значения напряжения С/ от номиналь­ного значения С/ном:

2

Отклонение напряжения обусловлено изменением потерь напря­жения (см. гл. 12), вызываемых изменением мощностей нагрузок. Отклонение напряжения нормируется на выводах приемников элек­трической энергии:

4 А) Колебания напряжения характеризуются размахом изменения напряжения δU1, , частотой повторения изменений напряжения FδUt, ин­тервалом между изменениями напряжения ∆ti, ti + 1 , дозой фликера Рt.

Источниками колебаний напряжения являются потребители элек­троэнергии с резкопеременным графиком потребления мощности (особенно реактивной). К ним относятся: дуговые сталеплавильные печи, электросварка, поршневые компрессоры и ряд других. При рез­ком возрастании нагрузки происходит резкое увеличение потерь на­пряжения в ветвях сети, питающих эту нагрузку. В результате резко уменьшается напряжение на приемном узле ветви. При резком умень­шении нагрузки происходит уменьшение потерь напряжения и, сле­довательно, увеличение напряжения на приемном узле ветви.

Отмечается, что в электрических сетях распространение колеба­ний напряжения происходит в направлении к шинам низкого на­пряжения практически без затухания, а к шинам высокого напря­жения - с затуханием по амплитуде. Этот эффект проявляется в зависимости от мощности короткого замыкания SКЗ.СИСТ системы. При распространении колебаний напряжения в любом направле­нии их частотный спектр сохраняется.

Размах изменения напряжения - разность между сле­дующими друг за другом действующих значений напряжения лю­бой формы, т. е. между следующими друг за другом максимальным и минимальным значениями огибающей действующих значений на­пряжения.

Огибающая действующих (среднеквадратичных) значений напря­жения - ступенчатая временная функция, образованная действую­щими значениями напряжения, определенными на каждом полупе­риоде напряжения основной частоты.

Если огибающая действующих значений напряжения имеет го­ризонтальные участки (при спокойном графике нагрузки), то раз­мах изменения напряжения определяется как разность между соседними экстремумом (максимумом или минимумом ) и горизонтальным участком или как разность между соседними го­ризонтальными участками (рис.1).

( 4 )

Длительность изменения напряжения - интервал времени от начала одиночного изменения напряжения до его конечного зна­чения (см. рис. 1).

Рис. 1. Колебания напряжения (пять размахов изменений напряжения)

Ф л и к е р (мерцание) - субъективное восприятие человеком ко­лебаний светового потока искусственных источников освещения, вызванных колебаниями напряжения в электрической сети, питаю­щей эти источники.

Доза фликера - мера восприимчивости человека к воз­действию фликера за установленный промежуток времени, т. е. ин­тегральная характеристика колебаний напряжения, вызывающих у человека накапливающееся за установленный период времени раз­дражение мерцаниями (миганиями) светового потока.

Дозу фликера напряжения в процентах в квадрате вычисляют по выражению

Время восприятия фликера - минимальное время для субъектив­ного восприятия человеком фликера, вызванного колебаниями на­пряжения.

Рис. 2. Зависимости частоты допустимых изменений напряжения от частоты их появления

Предельно допустимые значения размаха изменения напряже­ния в точках общего присоединения к электрическим сетям в зависимости от частоты повторения изменений напряжения FδUt, или интервала между изменениями напряжения равны значени­ям, определяемым по кривым рис. 2. Кривая 1 - для потребите­лей электрической энергии, располагающих лампами накаливания. Кривая 2 - в помещениях, где требуется значительное зрительное напряжение. Перечень помещений с разрядами работ, требующих значительного зрительного напряжения, устанавливают в норма­тивных документах, утверждаемых в установленном порядке.

Предельно допустимое значение суммы установившегося откло­нения напряжения δUy и размаха изменений напряжения δUt, в точ­ках присоединения к электрическим сетям напряжением 0,38 кВ рав­но ±10% от номинального напряжения.

Предельно допустимое значение для кратковременной дозы фли­кера Р5t при колебаниях напряжения равно 1.38, а для длительной дозы фликера РLt при тех же колебаниях напряжения равно 1,0.

Кратковременную дозу фликера определяют на интервале вре­мени наблюдения, равном 10 мин. Длительную дозу фликера опре­деляют на интервале времени наблюдения, равном 2 ч.

Предельно допустимое значение для кратковременной дозы фли­кера РSt в точках общего присоединения потребителей электричес­кой энергии, располагающих лампами накаливания в помещениях, где требуется значительное зрительное напряжение, равно 1,0, а для длительной дозы фликера РLt в этих же точках равно 0,74.

Б) Несинусоидальность напряжения появляется потому, что в кри­вой напряжения, помимо гармоники основной частоты , имеют место гармоники других высших частот, кратных основ­ной частоте (п = 2, 3, 4,..., и т.д.). Гармоники обычно определяются разложением кривой фактического напряжения в ряд Фурье.

Причиной возникновения несинусоидальности напряжения явля­ется наличие потребителей электроэнергии с нелинейной вольт-ампер­ной характеристикой. Основной вклад в несинусоидальность напря­жения вносят тиристорные преобразователи электрической энергии, получившие широкое распространение в промышленности.

Несинусоидальность напряжения характеризуется следующими показателями:

коэффициентом искажения синусоидальности кривой напряжения;

коэффициентом «-и гармонической составляющей напряжения.

Коэффициент искажения синусоидальности кривой напряжения Кu, %, является отношением суммарного действующего значения всех высших гармоник к действующему значению напряжения ос­новной гармоники, причем п ≥ 2

7

Таблица.1 Значения коэффициента искажения синусоидальности кривой напряжения, %

Нормально допустимое значение при Uном, кВ

Предельно допустимое значение при Uном, кВ

0,38

6. ..20

35

110. ..330

0,38

6. ..20

35

110. ..330

8,0

5,0

4,0

2,0

12,0

8,0

6,0

3,0

При определении коэффициента искажения синусоидальности кривой напряжения допускается не учитывать гармонические со­ставляющие порядка и > 40 или действующее значение которых ме­нее 0,3 от U(1).

Предельно допустимое значение коэффициента n-й гармоничес­кой составляющей напряжения вычисляют по ajhvekt

8

где KU(n)норм - нормально допустимое значение коэффициента п-й гармонической составляющей напряжения.

В) Целесообразность применения того или иного способа регули­рования напряжения определяется местными условиями в зависи­мости от протяженности сети и ее схемы, резерва реактивной мощ­ности и т.п. Ниже рассмотрены наиболее часто применяемые способы регулирования напряжений, для каждого из них указаны целесообразные области использования.

1 2

Потери напряжения в ли­ниях и трансформаторах зависят от номинального напряжения, нагрузки элемента сети и ее электрического сопротивления. Номинальное напряжение сети вы­бирают на основании технико-экономических расчетов, учитываю­щих затраты на сооружение и эксплуатацию сети. Поэтому примене­ние повышенных номинальных напряжений только из соображений уменьшения потерь напряжения в сети обычно не оправдывается.

Таким образом, изменять значения потерь напряжения в сети практически возможно только путем изменения сопротивления сети или ее нагрузки.

Снижение сопротивления сети. Практически измене­ние сопротивления сети связывают с изменением режима напряже­ний только в двух случаях:

при выборе сечений проводов и жил кабелей по допустимой потере напряжения.

при применении последовательного включения конденсаторов с воздушной линией