
- •Содержание
- •Раздел 1. Теоретические основы надежности
- •Понятия и определения надежности
- •Показатели надежности
- •Показатели безотказности.
- •Показатели долговечности.
- •Коэффициент технического использования является безразмерной величиной
- •Экономические аспекты надежности
- •Экономические показатели надежности
- •Отказ. Классификация отказов. Параметр потока отказов
- •1) По причинам возникновения:
- •Энергетическая концепция возникновения отказа
- •Случайные величины. Законы распределения, применяемые в теории надежности
- •Определение показателей надежности по эмпирическим данным
- •Интенсивность отказов определяется как:
- •Выбор закона распределения
- •Параметры статистического распределения.
- •Надежность сложных систем. Сложная система и ее характеристики
- •Структурный анализ систем технологического оборудования
- •1) Надежность системы с последовательно включенными элементами всегда будет ниже надежности самого ненадежного элемента системы:
- •2) Чем сложнее система (чем больше элементов в системе) с последовательным соединением элементов, тем ниже ее надежность; при усложнении системы ее надежность будет падать.
- •1) Надежность системы с параллельно включенными элементами будет выше, чем надежность отдельного элемента;
- •2) Надежность системы увеличивается с увеличением числа элементов.
- •Методы расчета надежности сложных технических систем
- •Методика определения надежности сложных систем с помощью минимальных путей и минимальных сечений на примере системы «2 из 3»
- •Резервирование. Методы, способы и типы резервирования
- •Задачи выбора оптимального числа резервных элементов в системе в случае нагруженного резерва
- •Расчет надёжности в случае ненагруженного резерва
- •Классификация машин и аппаратов по надежности
- •Работоспособность: анализ области работоспособности
- •Источники информации по надежности
- •Испытания на надежность: объекты, виды и методы испытаний
- •Раздел 2. Физические основы надежности
- •Старение и износ
- •Модель старения. Законы старения. Законы превращения
- •Процессы старения, протекающие при контакте поверхностей
- •Область существования процесса старения
- •Классификация процессов старения
- •Износ материалов: природа и классификация
- •Классификация видов изнашивания по видам
- •Классификация процессов изнашивания по скорости разрушения
- •Раздел 3. Эксплуатационная надежность
- •Методика определения остаточного ресурса при малоцикловых нагрузках
- •Методика определения остаточного ресурса химического оборудования по критерию коррозионной стойкости
- •2.1. Определение минимального числа точек поверхности для измерений
- •2.1.А. Достоверность расчета надежности
- •2.1.Б. Оценка однородности выборки
- •2.2. Определение параметров распределения глубин разрушения
- •2.3. Определение максимальной глубины разрушения
- •3.1. Расчет ресурса Тр в частном случае при постоянной скорости разрушения с
- •3.2. Расчет минимального установленного ресурса
- •3.3. Расчет остаточного установленного ресурса
Износ материалов: природа и классификация
Износ, возникающий при трении сопряженных поверхностей, является наиболее характерным видом повреждения большинства машин и их механизмов.
Изнашивание — это процесс постепенного изменения размеров тела при трении, проявляющийся в отделении с поверхности трения материала и (или) его остаточной деформации (ГОСТ 16429—70).
Изнашивание может сопровождаться процессами коррозии и является сложным физико-химическим процессом.
При контакте двух сопряженных поверхностей и их относительном перемещении в поверхностных слоях возникают механические и молекулярные взаимодействия, которые в конечном итоге и приводят к разрушению микрообъемов поверхностей, т. е. к их износу.
Согласно современным представлениям, опирающимся на достижения в области физики твердого тела, теории вязкого и хрупкого разрушения металлов, представлений физико-химической механики, теории поверхностных явлений и специальных исследований в области износа можно оценить основные факторы, определяющие характер и интенсивность протекания процесса изнашивания.
В процессе изнашивания исходный (технологический) микрорельеф преобразуется в эксплуатационный (рисунок 10.1).
Рисунок 10.1 – Схема трансформации технологического рельефа поверхности в эксплуатационный
При этом, устанавливается та шероховатость поверхности, которая соответствует данному процессу разрушения поверхностных слоев в период нормального износа. Она может стать более грубой или более гладкой, чем исходная шероховатость.
Установление технологической шероховатости, близкой к эксплуатационной, сводит к минимуму период приработки.
При различных видах фрикционных связей износ может возникать в результате следующих причин:
1) фрикционной усталости;
2) малоцикловой фрикционной усталости;
3) микрорезания при первых актах взаимодействия. Процессов изнашивания, при которых возникает микрорезание стараются избежать, так как при этом значительно возрастает интенсивность процесса разрушения поверхностных слоев;
4) разрушения (в том числе усталостного) пленок;
5) когезионного (адгезионного) отрыва материала при первых актах взаимодействия. Адгезионное схватывание относится к недопустимым видам и является следствием нарушения нормальной эксплуатации машин или ошибок при подборе материалов.
Основные причины разрушения микрообъемов связаны с усталостными процессами.
Усталостная природа изнашивания. Последние годы все большее распространение получает усталостная (кумулятивная) теория износа, когда основная причина разрушения поверхностных слоев связывается с возникновением усталостных трещин и отделением микроскопических чешуек материала или его окислов. При этом процесс изнашивания рассматривается как кумулятивный, т. е. суммирующий действие отдельных факторов при многократном нагружении фрикционных связей, что приводит в итоге к отделению частицы износа. Как правило, наличие пленки смазки, возникновение окислов, тепловой эффект и ряд других факторов влияют на интенсивность развития усталостного процесса, не изменяя его природы.