
- •1.Пролог - мова логічного програмування.
- •1.1.Загальний огляд мови Пролог.
- •1.2.Переваги і недоліки мови Пролог.
- •1.3.Числення предикатів - математична основа мови.
- •1.4.Побудова теорії деякої області знань.
- •1.5.Від формальної логіки до логічного програмування.
- •1.6.Механізм логічного виведення і керування пошуком.
- •2.Основні концепції прологу.
- •2.1.Факти та правила.
- •2.2.Як змінні отримують свої значення.
- •2.3.Анонімні змінні.
- •2.4.Складні цілі: кон`юнкція та диз`юнкція.
- •2.5.Способи Співставлення.
- •3.Структура програми pdc прологу.
- •3.1.Основні розділи програми.
- •3.2 Стандартні домени.
- •3.3.Синтаксис правила.
- •3.4.Директиви комп`ютеру.
- •3.5.Бектрекінг.
- •3.5.1.Бектрекінг з внутрішньою ціллю.
- •4.Контроль пошуку рішень.
- •4.1.Використання предикату fail.
- •4.2.Відміна бектрекінгу.
- •1.Коли ви знаєте попередньо, що певні варіанти ніколи не дадуть поштовху в знаходженні розв'язку, тоді використання cut(зелений cut) відкидає перегляд альтернативних шляхів.
- •2.Коли логіка програми потребує використання cut для відкидання перегляду альтернативних підцілей, тоді його називають червоним відтинанням.
- •4.3.Предикат not - заперечення як неуспіх.
- •4.4.Труднощі у використанні відтинання і заперечення.
- •4.5.Засоби керування.
- •4.6.Узагальнення.
- •5.Прості та складні об'єкти.
- •5.1 Прості дані.
- •5.1.1. Константи як об'єкти даних.
- •5.2.Складні об'єкти даних і функтори.
- •5.2.1.Уніфікація складних об`єктів.
- •5.2.2.Приклад застосування функторів.
- •5.3.Приклад використання складних об'зктів.
- •5.4.Опис доменів складних об'єктів.
- •5.5.Багаторівневі складні об'єкти.
- •5.6.Приклад, який ілюструє задання структури речення англійської мови.
- •5.7.Опис змішаних складних об'єктів.
- •5.7.1.Аргументи, які можуть мати різний тип.
- •5.7.2 Cписковий тип.
- •5.8.Порівняння складних об`єктів.
- •5.9.Узагальнення.
- •6. Ітерація і рекурсія.
- •6.1.Реалізація ітераційного процесу за допомогою бектрекінгу.
- •6.2.Дії типу до і після.
- •6.3.Застосування бектрекінгу для реалізації циклів.
- •6.4.Рекурсивні процедури.
- •6.5.Використання аргументів в якості параметрів циклу.
- •7. Рекурсивні структури даних.
- •7.1.Структура даних типу дерева.
- •7.2.Обходи дерева.
- •7.3.Створення дерева.
- •7.4.Бінарний пошук на дереві.
- •7.5. Сортування по дереву.
- •7.5. Програмна реалізація лексикографічного впорядкування при символьному вхідному потоці.
- •8. Робота з списками в пролозі.
- •8.1.Рекурсивна сутність списку.
- •8.2.Обробка списків.
- •8.2.1.Друк списків.
- •8.2.2.Підрахунок кількості елементів.
- •8.2.3.Іще один варіант підрахунку довжини списку.
- •8.2.4.Модифікація списку.
- •8.2.5.Належність елемента списку.
- •8.3.Використання одного й того ж предикату для вирішення різних задач.
- •8.4. Знаходження зразу всіх розв`язків.
- •8.5.Складні списки.
- •8.6.Реалізація синтаксичного аналізу за допомогою списків.
- •9. Техніка програмування в пролозі.
- •9.1.Принципи побудови експертної системи.
- •9.2. Макетування: задача маршрутизації.
- •9.3.Пригоди в дивних печерах.
- •9.4. Моделювання апаратних засобів.
- •9.5.Задача про ханойські башні.
- •9.6.Ділення слів на склади.
- •9.7. Задача про n королев.
- •10.Особливі технічні прийоми для професіоналів.
- •10.1.Потоковий аналіз.
- •10.2.Керування потоковим аналізом.
- •10.3. Стиль програмування.
7. Рекурсивні структури даних.
Рекурсивними можуть бути не тільки правила, а й структури даних. Пролог належить до тих мов програмування, в яких дуже зручно можна організовувати, описувати і реалізовувати дані рекурсивного типу. Тип даних буде рекурсивним, якщо він представляє собою структуру, яка в своєму визначенні використовує структуру, подібну собі.
Найбільш використовуваною рекурсивною структурою є список, але ми його розглянемо трішки пізніше. В цьому розділі ми зосередимо свою увагу на структурі даних типу дерева і на її використанні.
7.1.Структура даних типу дерева.
Серед структур даних типу дерева можна виділити спеціальний клас найбільш вживаних дерев- бінарні дерева. Можна дати наступне рекурсивне визначення бінарного дерева:
1.Пусте дерево- бінарне дерево.
2.Кожний вузел бінарного дерева має не більше одного лівого бінарного піддерева і не більше одного правого бінарного піддерева.
Таку структуру даних в Пролозі можна визначити за допомогою двох предикатів:
treetype = tree(string,treetype,treetype) та empty
Останній використовується для позначення пустого дерева. Тому структура даних для задання бінарного дерева може бути описана наступним чином:
domains
treetype= tree(string, treetype,treetype);
empty
Наприклад, дерево зображене на мал.7.1
c a t h y
/ \
/ \
m i c h a e l m e l o d y
/ \ / \
/ \ / \
c h a r l e s h a s e l j i m e l e o n o r
Мал.7.1.
може бути описане:
tree('Cathy',tree('Michael',tree('Charles',empty, empty),
tree('Hazel' ,empty, empty)),
tree('Melody', tree('Jim',empty, empty),
tree('eleanor' ,empty, empty)))
Відмітимо, що це не є прологівсьгою фразою; це є тільки складною структурою даних.
7.2.Обходи дерева.
Існує багато правил обходу дерев: прямий, зворотній, кінцевий і т.д.. Наприклад, розглянемо алгоритм прямого обходу.
1. Якщо дерево пусте, тоді нічого не робити.
2. В іншому випадку, обробити поточний вузел, потім обійти ліве піддерево обробленого вузла, а потім обійти праве піддерево обробленого вузла.
В Пролозі його можна реалізувати за допомогою двох фраз:
traverse(empty).
traverse(tree(X,Y,Z):- do something with X, traverse(Y),
traverse(Z).
Для того, щоб подивитись на нього в дії, розглянемо програму, зображену на мал.7.2, яка обходить дерево і друкує значення, що містяться в вузлах дерева.
domains
treetype = tree(string, treetype, treetype);
empty()
predicates
print_all_elements(treetype)
clauses
print_all_elements(empty).
print_all_elements(tree(X,Y,Z)):- write(X), nl,
print_all_elements(Y),
print_all_elements(Z).
goal: print_all_elements(tree("Cathy", tree("Michael",
tree("Charles", empty, empty),
tree("Hazel", empty, empty)),
tree("Melody", tree("Jim", empty,
empty), tree("Eleanor", empty,
empty)))).
Мал.7.2.