
- •Биохимия крови и мочи
- •1. Белки крови, их количественное содержание и выполняемая функция. Причины изменения содержания белков в плазме крови. Причины появления белков в моче.
- •Подпеченочная (обтурационная) желтуха
- •2. Печёночно-клеточная (печёночная) желтуха печеночно-клеточная желтуха
- •Характеристика некоторых белков
- •Причина изменения содержания.
- •Синтез и распад гликопротеинов.
- •Причина изменения содержания.
- •Фибриноген плазмы.
- •Изменение белков при патологии.
- •Причины появления в моче.
- •2. Гемоглобин, его содержание в крови, биологическая роль. Причины изменения содержания в крови. Гипоксия, их причины. Гемоглобинурия.
- •Биологическая роль
- •Изменение числа эритроцитов.
- •Строение и синтез.
- •Гипоксии.
- •Содержание
- •Распад гликогена в печени
- •Стимуляция синтеза гликогена
- •Изменения в крови и появление в моче.
- •4. Ацетоновые тела, их происхождение и биологическая роль, содержание в крови. Ацетонемия и кетонурия. Причины их возникновения.
- •Биологическая роль
- •5. Мочевина. Значение ее образования в организме. Содержание мочевины в крови и суточное выделение с мочой. Причины изменения суточного количества мочевины в моче.
- •Содержание в крови и суточное выведение
- •Синтез мочевины.
- •6. Креатин и креатинин, их содержание в крови. Биологическая роль креатина. Суточное выведение креатинина с мочой. Причины появления креатина в моче. Содержание в крови.
- •Биологическая роль креатина.
- •Синтез креатина.
- •Синтез креатинина.
- •7. Аммиак. Пути его образования и обезвреживания в организме. Суточное количество аммиака в моче. Причины изменения содержания аммиака в моче.
- •Механизм безопасного транспорта аммиака.
- •8. Остаточный азот крови. Его количественное содержание. Общий азот мочи. Причины изменения содержания остаточного азота в крови и общего азота в моче.
- •Нуклеотиды, нуклеозиды, витамины
- •9. Желчные пигменты, их происхождение. Содержание билирубина в крови. Причины изменения содержания билирубина в крови и его появление в моче. Уробилин, причины изменения его содержания в моче.
- •Содержание билирубина в крови.
- •Причина изменения содержания билирубина в крови.
- •Причины появления в моче.
- •Уробилин. Причины изменения содержания в моче.
- •10 Минеральные компоненты крови: cl, Са, р, Na, их биологическая роль, содержание в крови. Причины изменения содержания.
- •Хлориды сыворотки или плазмы
- •Фосфор неорганический сыворотки
- •Натрий сыворотки или плазмы.
- •11. Ферменты крови. Причины изменения активности ферментов в крови. Энзимодиагностика. Ферменты крови.
- •12 Липиды крови: состав, содержание в крови. Липопротеиды крови. Изменение содержания липидов крови при патологии. Содержание в крови.
- •Метаболизм хм.
- •Обмен холестерола.
- •Биологическая роль холистерола
- •Патологии.
- •Кетонемия и кетонурия.
Изменения в крови и появление в моче.
Повышение показателя имеет место при диабете, гипертиреозе, аденокортицизме (гиперфункции коры надпочечников), гиперпитуитаризме, иногда при заболеваниях печени.
Снижение показателя имеет место при гиперинсулинизме, недостаточности функции надпочечников, гипопитуитаризме при печеночной недостаточности (иногда), функциональной гипогликемии и при приеме гипогликемических препаратов.
В моче
Глюкоза в нормальной моче имеется в виде следов и не превышает 0,02 %, что обычными качественными методами не определяется. Появление сахара в моче (глюкозурия) может быть в физиологических условиях обусловлено пищей с больших содержанием углеводов, после лекарств, например диуретин, кофеин, кортикостроиды. Патологическая глюкозурия чаще всего бывает при сахарном диабете, реже при тиреотоксикозе, синдроме Иценко — Кушинга и т. д.
4. Ацетоновые тела, их происхождение и биологическая роль, содержание в крови. Ацетонемия и кетонурия. Причины их возникновения.
Содержание - до 30 мг/л.
Мобилизация триглицеридов жировой ткани и проблемы транспорта высших жирных кислот.
В постадсорбционном периоде (когда между приемами пищи длительный интервал) идет мобилизация энергетических ресурсов организма, в том числе мобилизация триглицеридов жировой ткани.
Образующиеся в ходе мобилизации высшие жирные кислоты через мембрану липоцитов поступают в кровяное русло и в комплексе с альбуминами переносятся током крови в различные органы и ткани.
Там жирные кислоты проникают через наружную клеточную мембрану внутрь клеток и связываются со специальным так называемым Z-белком. В комплексе с этим внутриклеточным переносчиком жирные кислоты перемещаются в цитозоле к месту их использования.
Концентрация неэтерифицированных или иначе свободных жирных кислот в плазме крови натощак составляет величину 0,56-0,58 ммоль/л.
Жирные кислоты очень быстро обмениваются в крови, время их полужизни в русле крови составляет около 4 мин. За сутки с током крови переноситься примерно 150 гр свободных жирных кислот. Эта величина превышает величину суточного поступления липидов в организме. Это свидетельствует о том, что значительная часть транспортируемых кровью высших жирных кислот является продуктом их биосинтеза из углеводов или углеродного скелета аминокислот.
В условиях длительно интенсивной работы требующей больших энергозатрат жирные кислоты, поступающие из жировых депо, становятся основным видом энергетического топлива. Значение их как энергетического топлива еще более возрастает при недостатке глюкозы в органах и тканях, что характерно для сахарного диабета или голодания. Однако на пути эффективного использования высших жирных кислот клетками встает так называемый диффузионный барьер.
Что это за барьер?
Суть этого явления заключается в том, что высшие жирные кислоты на своем пути из кровяного русла в клетки должны пройти через гидрофильную фазу межклеточной среды. Но они нерастворимы в воде и поэтому скорость движения через межклеточную среду крайне ограничена. Выходом из положения является преобразование жирных кислот в печени в соединения, с небольшой молекулярной массой которые растворимы в воде.
Это такие соединения как ацетоуксусные и -гидроксимасляные кислоты. Эти соединения из печени опять же поступают в кровь, а затем идут в клетки тканей, но для этих молекул диффузионного барьера не существует, поэтому они служат эффективным энергетическим топливом. Эти соединения получили название - ацетоновые тела. К ацетоновым телам относится и сам ацетон (диметилкетон). В то же время в гепатоциты высшие жирные кислоты поступают минуя диффузионный барьер потому, что гпатоциты в печеночных синусах непосредственно контактируют с кровью.
Биосинтез и распад ацетоновых тел.
Жирные кислоты поступающие в гепатоциты, активируются и подвергаются -окислению с образованием ацетилКоА. Именно этот ацетилКоА используется для синтеза ацетоновых тел, согласно схеме.
В ходе первой реакции (в первую реакцию вступают 2 молекулы ацетилКоА, фермент ацетилКоА-ацетилтрансфераза=тиолаза) образуется 4-х углеродная молекула ацетоацетилКоА. Эти соединения макроэргические поэтому в этом синтезе не принимает участие АТФ.
В ходе следующей реакции (фермент -гидрокси-метилглюкоилКоАсинтетаза) (в последующем вы увидите, что первые этапы биосинтеза ацетоновых тел и холестерина абсолютно равнозначны. Это одна из ключевых реакций синтеза ацетоновых тел используется еще одна молекула ацетилКоА, вода. Образуется 6-и углеродная молекула - -гидрокси--метилглютарилКоА.
Последняя реакция - лиазная (катализирует фермент ГМГ-лиаза), происходит отщепление ацетилКоА и образование 4-х углеродной молекулы - ацетоацетата.
Как образуются два других соединения относящихся к группе ацетоновых тел?
Из ацетоуксусной кислоты спонтанно, чаще всего, или иногда за счет декарбоксилазы происходит отщепление карбоксильной группы в виде углекислого газа и образуется ацетон.
Ацетоуксусная кислота восстанавливается в ходе реакции катализируемой ферментом -гидроксибутератдегидрогиназой с использованием НАД+Н+, в итоге образуется -гидроксимасляная кислота. Это третий составной элемент ацетоновых тел.
Образовавшиеся ацетоновые тела поступают из гепатоцитов в кровь и разносятся к клеткам. Процесс синтеза ацетоновых тел идет постоянно, и ацетоновые тела всегда присутствуют в крови в концентрации 30мг/л. При голодании их содержание может увеличиваться до 400-500 мг/л. Еще больше концентрация при сахарном диабете в тяжелой форме до 3000-4000 мг/л.
Ацетоновые тела в норме хорошо утилизируются клетками периферических тканей, в особенности это касается скелетных мышц и миокарда. Скелетные мышцы и миокард значительную часть нужной им энергии получают за счет окисления ацетоновых тел. Только нервные клетки в обычных условиях не утилизируют ацетоновые тела, однако при голодании даже головной мозг 50-75% соей потребности в энергии удовлетворяет за счет окисления ацетоновых тел.
Ацетоацетат, поступающий в клетки различных тканей, прежде всего, подвергается активации помощью одного из двух механизмов.
Ацетоацетат с участием фермента тиокиназы, за счет энергии АТФ превращается в ацетоацетил-КоА.
Второй путь, является превалирующим в активации, это за счет фермента тиофоразы. Реакция, в которой принимают участие сукцениКоА и ацетоацетат, приводит к образованию ацетоацетил-КоА и образование сукцината, который далее окисляется в цикле Кребса.
Образующийся ацетоацетил-КоА далее дает 2 молекулы ацетил-КоА (принимает участие НSКоА, это тиолазная реакция)
АцетилКоА поступает в цикл Кребса, где ацетильные остатки окисляются до углекислого газа и воды.