
- •Биохимия крови и мочи
- •1. Белки крови, их количественное содержание и выполняемая функция. Причины изменения содержания белков в плазме крови. Причины появления белков в моче.
- •Подпеченочная (обтурационная) желтуха
- •2. Печёночно-клеточная (печёночная) желтуха печеночно-клеточная желтуха
- •Характеристика некоторых белков
- •Причина изменения содержания.
- •Синтез и распад гликопротеинов.
- •Причина изменения содержания.
- •Фибриноген плазмы.
- •Изменение белков при патологии.
- •Причины появления в моче.
- •2. Гемоглобин, его содержание в крови, биологическая роль. Причины изменения содержания в крови. Гипоксия, их причины. Гемоглобинурия.
- •Биологическая роль
- •Изменение числа эритроцитов.
- •Строение и синтез.
- •Гипоксии.
- •Содержание
- •Распад гликогена в печени
- •Стимуляция синтеза гликогена
- •Изменения в крови и появление в моче.
- •4. Ацетоновые тела, их происхождение и биологическая роль, содержание в крови. Ацетонемия и кетонурия. Причины их возникновения.
- •Биологическая роль
- •5. Мочевина. Значение ее образования в организме. Содержание мочевины в крови и суточное выделение с мочой. Причины изменения суточного количества мочевины в моче.
- •Содержание в крови и суточное выведение
- •Синтез мочевины.
- •6. Креатин и креатинин, их содержание в крови. Биологическая роль креатина. Суточное выведение креатинина с мочой. Причины появления креатина в моче. Содержание в крови.
- •Биологическая роль креатина.
- •Синтез креатина.
- •Синтез креатинина.
- •7. Аммиак. Пути его образования и обезвреживания в организме. Суточное количество аммиака в моче. Причины изменения содержания аммиака в моче.
- •Механизм безопасного транспорта аммиака.
- •8. Остаточный азот крови. Его количественное содержание. Общий азот мочи. Причины изменения содержания остаточного азота в крови и общего азота в моче.
- •Нуклеотиды, нуклеозиды, витамины
- •9. Желчные пигменты, их происхождение. Содержание билирубина в крови. Причины изменения содержания билирубина в крови и его появление в моче. Уробилин, причины изменения его содержания в моче.
- •Содержание билирубина в крови.
- •Причина изменения содержания билирубина в крови.
- •Причины появления в моче.
- •Уробилин. Причины изменения содержания в моче.
- •10 Минеральные компоненты крови: cl, Са, р, Na, их биологическая роль, содержание в крови. Причины изменения содержания.
- •Хлориды сыворотки или плазмы
- •Фосфор неорганический сыворотки
- •Натрий сыворотки или плазмы.
- •11. Ферменты крови. Причины изменения активности ферментов в крови. Энзимодиагностика. Ферменты крови.
- •12 Липиды крови: состав, содержание в крови. Липопротеиды крови. Изменение содержания липидов крови при патологии. Содержание в крови.
- •Метаболизм хм.
- •Обмен холестерола.
- •Биологическая роль холистерола
- •Патологии.
- •Кетонемия и кетонурия.
Распад гликогена в печени
Первичным сигналом, стимулирующим мобилизацию гликогена в печени, является снижение концентрации глюкозы в крови. Если вы хотели есть, но вас отвлекли как ребенка и ничего не давать, то дальше он уже не просит есть. Почему?
1. В ответ на это а-клетки островков Лангерганса панкреатической железы выбрасывают в кровь гормон ГЛЮКАГОН.
2 Глюкагон, циркулирующий в крови взаимодействует со своим белком-рецептором, находящимся на внешней стороне наружной клеточной мембраны и образует гормон-рецепторный комплекс.
3. Затем с помощью специального механизма после образования гормон-рецепторного комплекса происходит активация фермента аденилатциклазы. (G белки меняют свою конформацию и переводят в активную форму аденилатциклазу).
4 Активная форма начинает образовывать циклический АМФ из АТФ.
5 ЦАМФ способен активировать еще один фермент - протеинкиназа. Этот фермент состоит из 4 субъединиц: 2-х регуляторных и 2-х каталитических. Две молекулы ЦАМФ присоединяются к регуляторным субъединицам => происходит изменение конформации и высвобождаются каталитические субъединицы.
6 Каталитические субъединицы обеспечивают фосфорилирование ряда белков, в том числе ферментов. В частности они обеспечивают фосфорилирофание гликогенсинтетазы и это сопровождается блокированием синтеза гликоген. Кроме этого происходит фосфорилирование киназы-фосфорилазы, (слово киназа означает фосфорилирование) которая фосфорилирует гликогенфосфорилазу. Отсюда активация расщепления гликогена с выходом глюкозы в кровь.
7 Выброшенная глюкоза в кровь, увеличивает концентрацию, доводя ее до нормальных величин.
Стимуляция расщепления гликогена в печени происходит так же за счет выброса адреналина.
1В качестве главных посредников здесь выступают Р рецепторы в гепатоцитах. Они связывают адреналин, т.е. образуется гормоно-адреналиновый комплекс.
2После образования гормоно-рецепторного комплекса происходит повышение содержания ионов Са в клетках.
3Са стимулирует Са-зависимую киназу фосфорилазы. Которая в свою очередь активирует фосфорилазу путем ее фосфорилирования.
Стимуляция синтеза гликогена
Студент получил стипендию и наелся. Съел много сладких вещей. В этом случае наблюдается повышение содержания глюкозы в крови. Что является внешним сигналом для гепатоцитов в отношении стимуляции синтеза гликогена и связывания таким образом лишней глюкозы из русла крови. Срабатывает следующий механизм.
1.При повышении концентрации глюкозы в крови путем пассивной диффузии повышается содержание глюкозы в гепатоцитах. Это повышение содержания глюкозы в крови очень сложным (в основном это аллостерическая модуляция) механизмом приводит к активации фосфопротеинфосфотазы.
2.Который вызывает дефосфорилирование гликогенсинтетаза, отщепляя от фосфорилирофанных форм фосфорилазы и гликогенсинтетазы фосфорную кислоту и поэтому
3 Дефосфорилированная гликогенсинтетаза превращается в активную форму, что резко стимулирует синтез гликогена.
4. Как только концентрация выравнивается, глюкозы в крови так этот механизм выключается.
В снижении фосфорилазной активности в гепатоцитах определенную роль играет инсулин.
1. Выделяется в ответ на повышение концентрации глюкозы в крови. Его связывание с инсулиновыми рецепторами приводит к активации в клетках печени фермента фосфодиастеразы.
2 .Это фермент, который расщепляет циклическую АМФ.А значит, прерывающего активацию гликогенфосфорилазы.
Как только мы съедаем много углеводов, мы каждый раз своеобразно бьем кнутом по нашей панкреатической железе, заставляя, выбрасывать инсулин. Отсюда истощение инсулярного аппарата, который наблюдается у людей с неблагополучным статусом.
Регуляция содержания глюкозы в крови и метаболизма углеводов в организме.
Контроль метаболизма углеводов в организме человека осуществляется единой нейрогуморальной системой. Однако в ее работе можно выделить три группы механизма:
Контроль с помощью нервных механизмов. Возбуждение того или иного отдела ЦНС далее передача импульса по нервным стволам, далее выделение медиаторов и далее воздействие на обмен углеводов в клетке.
Контроль с помощью нейрогормональных механизмов. Возбуждение подкорковых метаболических центров, выделение гормонов гипоталамуса, выделение гормонов гипофиза, выделение гормонов периферических желез внутренней секреции и, наконец, воздействие гормонов на метаболизм углеводов в клетке.
Контроль с помощью метаболитно-гуморальных механизмов. Н-р, повышение концентрации глюкозы в крови приводит к повышению продукции инсулина клетками, а далее следует активация процессов усвоения глюкозы клетками.
Одной из важнейших задач системы регуляции обмена углеводов является поддержание концентрации глюкозы в крови на определенном уровне (в пределах 3,3-5,5 ммоль/л). Эта концентрация обеспечивает нормальное снабжение клеток различных органов и тканей этим моносахаридом, который служит для них источником энергии и источником пластического материала.
Постоянная концентрация глюкозы в крови - есть результат очень сложного баланса процессов поступления глюкозы в кровь и процессов ее утилизации в органах и тканях.
Важную роль в поддержании концентрации глюкозы играет эндокринная система человека. Целый ряд гормонов повышает содержание глюкозы в крови: глюкагон, адреналин, соматотропин (СТГ), йодированные тиронины, глюкокортикоиды (кортизол).
Глюкагон повышает содержание глюкозы в крови за счет стимуляции процессов мобилизации гликогена в печени. Он стимулирует процесс глюконеогенеза, за счет повышения активности одного из фермента глюконеогенеза: фруктоза-1,6-бисфосфотазу.
Глюкагон выделяется -клетками островков Лангерганса при снижении концентрации глюкозы в крови. Поскольку ответная реакция на повышение содержания глюкагона в крови базируется на изменении активности уже имеющихся в клетках ферментов, наблюдается быстрое повышение концентрации глюкозы в крови. Глюкагон не оказывает влияние на скорость расщепления гликогена в мышцах, поскольку мышцы не имеют рецепторов к этому гормону.
Адреналин. Он секретируется в кровь мозговым вещевом надпочечников в экстремальных ситуациях.
В первую очередь адреналин стимулирует расщепление гликогена в мышцах и таким образом обеспечивает миоциты энергетическим топливом. Однако в мышцах нет фермента глюкоза-6-фосфотазы, поэтому при расщеплении гликогена в мышцах свободной глюкозы образуется, и она не поступает в кровь, т.е. за счет усиления скорости распада гликогена поддерживается энергетика самих мышц. В то же время адреналин способен ускорять расщепление гликогена в печени за счет активации фосфорилазы. Образующаяся глюкоза поступает из гепатоцитов в кровь, что приводит к повышению ее концентрации, поэтому все ситуации сопровождающиеся выбросом адреналина или введением адреналина естественно сопровождается повышением концентрации глюкозы в крови. Это повышение содержания глюкозы развивается очень быстро, поскольку, как и в случае глюкагона обусловлено повышением активности имеющихся в гепатоцитах ферментов.
Кортизол. Как и другие глюкокортикоиды вызывает повышение содержания глюкозы в крови за счет 2 основных эффектов:
Во-первых, он тормозит поступление глюкозы из крови в клетки ряда перефирических тканей (мышечная соединительная)
Во-вторых, кортизол является основным стимулятором глюконеогенеза. Причем стимуляция глюконеогенеза является главным механизмом ответственным за увеличение концентрации глюкозы при выбросе кортизола или при его введении.
Эффект кортизола развивается медленно содержание глюкозы в крови начинает повышаться через 4-6 часов после введения или выброса и достигает максимума примерно через сутки. Повышение содержания глюкозы в крови при действии кортизола сопровождается одновременно увеличением содержания гликогена в печени. В то же время при введении глюкагона содержание гликогена в печени снижается
Соматотропный гормон гипофиза так же в целом вызывает повышение содержания глюкозы в крови.
Но следует помнить, что введение этого гормона вызывает 2-х фазный ответ:
1 в течении первой четверти часа содержание глюкозы в крови снижается,
2 а затем развивается продолжительное повышение ее уровня в крови.
Механизм этой ответной реакции окончательно не выяснен. Предполагают, что на первом этапе происходит небольшое нарастание содержание инсулина в крови. За счет чего и происходит снижение содержания глюкозы. В более отдаленные периоды повышение содержания глюкозы в крови является следствием нескольких эффектов.
Во-первых это уменьшение поступления глюкозы в некоторые ткани (мышцы).
Во-вторых повышение поступления в кровь глюкагона из поджелудочной железы.
В-третьих уменьшение скорости окисления глюкозы в клетках в результате повышенного поступления в клетки жирных кислот (более высокое энергетическое топливо). Жир.кис. ингибируют пируваткиназу. Длительное введение соматотропного гормона приводит к развитию сахарного диабета.
Тироксин (Т4, тетрайодтиранин). Известно, что при гипертириозе окисление глюкозы идет с нормальной или повышенной скоростью. Содержание глюкозы натощак повышенно, одновременно у больных снижено содержание гликогена в печени.
Инсулин - гормон снижающий содержание глюкозы в крови. Выделяется в кровь -клетками в ответ на повышение содержание глюкозы в крови. Снижение содержания глюкозы в крови обусловлено тремя группами эффектов:
Инсулин повышает проницаемость клеточных мембран для глюкозы за счет активации белка-переносчика и способствует переходу глюкозы из крови и межклеточной жидкости в клетки.
Инсулин улучшает усвоение глюкозы клетками
а) стимулирует фосфорилирование глюкозы и ее окислительный распад
б) ускоряет синтез гликогена
в) превращение глюкозы в триглицериды
Тормозит процессы глюконеогенеза и расщепление гликогена в гепатоцитах до глюкозы.
Ответная реакция на введение или выброс инсулина развивается быстро. В физиологическом плане гормоны глюкагон и инсулин не являются антагонистами. Глюкагон обеспечивает перевод резервного гликогена в глюкозу, а инсулин обеспечивает поступление этой глюкозы из крови в клетки периферических тканей и ее последующую утилизацию в клетках.
Почему их нельзя считать антагонистами?
В суммарном плане влияние на концентрацию глюкозы их можно назвать антагонистами один гипергликемический, другой гипогликемический, однако в физиологическом плане их нельзя назвать антагонистами, поскольку один за счет распада гликогена увеличивает концентрацию глюкозы, а второй (инсулин) обеспечивает проникновение этой глюкозы и ее последующую утилизацию.
Синтез гликозаминокликанов стимулируется тестостероном и соматотропным гормоном, причем под действием соматотропина в печени синтезируется пептид (инсулиноподобный фактор роста). Именно пептид является истинным стимулятором синтеза гетерополисахаридов межклеточного вещества соединительной ткани.
Синтез гликозаминогликанов тормозят глюкокортикоиды. Замечено, что в местах инъекции кортизола количество межклеточного вещества в соединительной ткани уменьшается.