Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экзаменационные ответы на Металлург теплотехник...docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
317.12 Кб
Скачать

Плоскоструйные форсунки Полноструйные форсунки Форсунки высокого давления Воздушные форсунки

32.теплопроводность через однородную плоску стенку.

Рассмотрим однородную плоскую стенку толщиной δ (рис. 9.2). На наружных поверхностях стенки поддерживаются постоянные температуры tс1 и tс2. Коэффициент теплопроводности стенки постоянен и равен λ. При стационарном режиме ( ) и отсутствии внутренних источников теплоты (qv=0) дифференциальное уравнение теплопроводности примет вид:

.

(9.16)

При заданных условиях температура будет изменяться только в направлении, перпендикулярном плоскости стенки (ось Оx). В этом случае

,

и дифференциальное уравнение теплопроводности перепишется в виде:

.

(9.17)

Граничные условия первого рода запишутся следующим образом: при x=0 t=tc1; при x=δ t=tc2. Интегрируя уравнение (9.17), находим

.

После второго интегрирования получаем

.

(9.18)

Постоянные С1 и С2 определим из граничных условий: при x=0 t=tc1, С2=tc1; при x=δ t=tc21·δ+tc1, отсюда . Подставляя значения С1 и С2 в уравнение (9.18), получим уравнение распределения температуры по толщине стенки:

.

(9.19)

Для определения плотности теплового потока, проходящего через стенку в направлении оси Оx, воспользуемся законом Фурье, согласно которому .

Учитывая, что , получим

.

(9.20)

Общее количество теплоты, которое передается через поверхность стенки F за время τ,

.

(9.21)

Отношение называют тепловой проводимостью стенки, обратную ей величину - термическим сопротивлением теплопроводности. Поскольку величина λ зависит от температуры, в уравнения (9.20), (9.21) необходимо подставить коэффициент теплопроводностивзятый при средней температуре стенки.



37классификация печей по принципу теплогенерации.Генерация теплоты в печи происходит путем превращения химической или электрической энергии в теплоту. В зависимости от источника тепловыделения печи делятся на топливные, автогенные и электрические.ТопливныепечиВ топливных печах источником теплоты является химическая энергия твердого, жидкого или газообразного топлива. Теплота выделяется в результате сгорания топлива. Теплоносителями являются газообразные продукты сгорания топлива – дымовые газы. Топливные металлургические печи подразделяются на два класса: пламенные и слоевые. Рабочее пространство пламенных печей в малой степени заполнено обрабатываемым материалом, который располагается на поду. Основной объем рабочего пространства заполнен пламенем и дымовыми газами, передающими теплоту материалу. Современные пламенные печи работают на газообразном или на жидком топливе - мазуте. Для сжигания газообразного топлива служат горелки, для сжигания мазута – форсунки. К классу пламенных печей относятся сталеплавильные (мартеновские) печи, печи для плавки медных концентратов на штейн, печи для рафинирования меди, разнообразные печи прокатного и кузнечно-прессового производства: нагревательные колодцы, методические, кольцевые, роликовые печи, печи с выкатным подом, вращающиеся трубчатые печи для обжига сыпучих материалов. Известны три разновидности слоевых топливных печей: с плотным, "кипящим" и со взвешенным слоем обрабатываемого материала.В вертикальных шахтных печах с плотным слоем шихта, в состав которой может входить и твердое кусковое топливо, расположена по всему объему печи и медленно опускается сверху вниз.Горячие газы – продукты горения топлива – движутся через слой между кусками шихты снизу вверх, т.е. в противотоке.Шахтные печи с плотным слоем шихты широко распространены в металлургии.К ним относятся доменные печи, вагранки, печи для производства извести путем обжига известняка, печи никелевых и свинцовых заводов.В печах с "кипящим" слоем под действием движущихся снизу вверх газов размельченная шихта, в состав которой может входить и размельченное топливо, разуплотняется.Отдельные частицы шихты потоком газов поднимаются над слоем подобно кипящей жидкости. Иногда вместе с воздушным дутьем снизу в печь подают газообразное топливо. В цветной металлургии печи с «кипящим» слоем применяют для обжига сульфидных концентратов различных материалов, для сушки глинозема.В печах со взвешенным слоем обрабатывают материалы, доведенные до пылевидного состояния.Каждая частица материала находится во взвешенном состоянии под действием потока газов, идущего снизу вверх, и движется вместе с потоком.Применяют в этих печах размолотое и газообразное топливо.Их используют в цветной металлургии для плавки сульфидов цветных металлов.Автогенныепечи.Источником теплоты в этих печах является тепловой эффект экзотермических реакций окисления и горения ряда элементов, содержащихся в обрабатываемых материалах.В черной металлургии примером автогенных печей являются кислородные, сталеплавильные конвертеры и двухванные сталеплавильные печи.В них при продувке жидкого чугуна кислородом происходит окисление углерода и ряда других элементов с выделением теплоты.Этот процесс не требует расхода топлива.В цветной металлургии при производстве материалов из сульфидного сырья основным источником теплогенерации является процесс выгорания серы, содержащейся в сульфидах.В мартеновской печи, наряду с выделением теплоты сгорания топлива, происходит тепловыделение от окисления углерода и других элементов, содержащихся в жидкой ванне.Такие печи занимают промежуточное положение между топливными и автогенными печами.Электрическиепечи.По способу преобразования электрической энергии в теплоту можно выделить три класса печей, применяемых в металлургии: электродуговые, индукционные и печи сопротивления. В дуговых печах используется принцип пропускания электрического тока через газовый промежуток между двумя электродами.Под действием электрического напряжения газ между электродами ионизируется и становится электропроводным.При этом в газовом промежутке возникает электрическая дуга, представляющая собой яркосветящуюся смесь электронов, положительных ионов, атомов и молекул. Дуга является зоной, в которой энергия электричества преобразуется в теплоту, при этом температура дуги составляет от 3000 до 20000 К.В индукционных печах используется свойство переменного электрического тока создавать вокруг проводника переменное магнитное поле. Если поместить в такое поле нагреваемое тело, являющееся проводником, то в нем будут индуктироваться вихревые токи.Энергия вихревых токов преобразуется в теплоту, которая выделяется внутри нагреваемого тела.Работа так называемых печей сопротивления основана на действии закона Джоуля-Ленца, согласно которому при протекании тока в проводнике выделяется теплота, пропорциональная его электрическому сопротивлению.В печах сопротивления можно использовать постоянный и переменный ток.В металлургии электрические печи применяют для выплавки стали, производства ферросплавов, для нагрева металла перед обработкой давлением и при термической и термохимической обработке металлоизделий

38.сложный теплообмен.В действительных условиях работы различных теплообменных устройств теплота передается одновременно теплопроводностью, конвекцией и излучением. Такое явление называется сложным теплообменом. Например, в газоходах паровых котлов теплота передается не только излучением, но и конвекцией. В этом случае суммарный тепловой поток

.

(12.1)

Если в качестве основного процесса теплообмена принято тепловое излучение, то

.

(12.2)

Перенос теплоты конвекцией здесь учитывается увеличением приведенной степени черноты системы за счет

.

(12.3)

В тех случаях, когда конвективная составляющая теплового потока значительно превышает лучистую составляющую, в качестве основного процесса принимается конвекция, и тепловой поток определяется уравнением:

,

(12.4)

где

.

40.закон фурье.Согласно гипотезе Фурье, количество теплоты d2Qτ, проходящее через элемент изотермической поверхности dF за промежуток времени , пропорционально температурному градиенту :

.

(9.4)

Здесь множитель λ называется коэффициентом теплопроводности. Знак минус указывает на то, что теплота передается в направлении уменьшения температуры. Количество теплоты, прошедшее в единицу времени через единицу изотермической поверхности, называется плотностью теплового потока:

.

(9.5)

Проекции вектора q на координатные оси соответственно:

;   ;   .

Уравнения (9.4) и (9.5) являются математическим выражением основного закона теплопроводности — закона Фурье.

Количество теплоты, проходящее в единицу времени через изотермическую поверхность F, называется тепловым потоком:

.

(9.6)

Полное количество теплоты, прошедшее через эту поверхность за время τ, определится из уравнения

.