Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экзаменационные ответы на Металлург теплотехник...docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
317.12 Кб
Скачать

5)Излучение газов

Одно- и двухатомные газы практически прозрачны для теплового излучения. Значительной излучающей и поглощающей способностью, имеющей практическое значение, обладают трех- и многоатомные газы. Для теплотехнических расчетов наибольший интерес представляют углекислый газ и водяной пар, образующийся при горении топлива. В отличие от твердых тел, имеющих в большинстве сплошные спектры излучения, газы излучают энергию лишь в определенных интервалах длин волн Δλ, называемых полосами спектра. Для лучей других длин волн вне этих полос газы прозрачны, и их энергия излу­чения равна нулю. Таким образом, излучение и поглощение газов имеют избирательный характер. Если поглощение и излучение энергии в твердых телах происходят в тонком поверхностном слое, то газы излучают и поглощают энергию во всем объеме. Количество поглощаемой газом энергии зависит от числа находящихся в данном объеме микрочастиц газа. Последнее пропорционально толщине газового слоя, характеризуемой длиной пути луча l, парциальному давлению газа р и его температуре Т. Следовательно,

.



6) Термодинамические процессы: изохорный, изобарный, изотермический, адиабатный, политропный

Изохорный процесс (v=const)

Такой процесс может совершаться рабочим телом, находящимся в цилиндре при неподвижном поршне, если к рабочему телу подводится теплота от источника теплоты (см. рис. 4.1) или отводится теплота от рабочего тела к холодильнику. При изохорном процессе выполняется условие dv=0 или v=const. Уравнение изохорного процесса получим из уравнения состояния идеального газа (см. &1.6) при v=const. В pv-координатах график процесса представляет собой прямую линию, параллельную оси p. Изохорный процесс может протекать с повышением давления (процесс 1-2) и с понижением (процесс 1-2’).

Изобарный процесс (p=const)

В p-v координатах график процесса представляет собой прямую линию параллельную оси v (рис. 4.2). Изобарный процесс может протекать с увеличением объёма (процесс 1-2) и с уменьшением (процесс 1-2’). Запишем для точек 1 и 2 уравнения состояния: p·v1=R·T1p·v2=R·T2.

Изотермический процесс (T=const)

В p-v координатах график процесса изображается равнобокой гиперболой (рис. 4.3). Изотермический процесс может протекать как с увеличением объёма (процесс 1-2), так и с уменьшением объёма (процесс 1-2’).

Адиабатный процесс

Адиабатный процесс – это процесс, при котором рабочее тело не обменивается теплотой с окружающей средой (dq=0). Для получения графика процесса в p-v координатах выполним некоторые преобразования.

В соответствии с первым законом термодинамики dq=cv·dT+p·dv=c·dT, где с – теплоёмкость термодинамического процесса. Тогда можно записать, что

Политропныйпроцесс

Политропным процессом называется любой произвольный процесс изменения состояния рабочего тела, происходящий при постоянной теплоёмкости сп.

В политропном процессе dq=cп·dT.

Для получения графика политропного процесса в p-v координатах будем придерживаться тех же рассуждений, что и при получении графика адиабатного процесса. Заменим в соотношениях, полученных при изучении адиабатного процесса, обозначение теплоёмкости с на сп и обнаружим, что p·vn=const, а  . В дальнейшем всё, что написано об адиабатном процессе, можно распространить на описание политропного процесса, заменяя в выражениях k на n.

Покажем, что адиабатный процесс делит все процессы на две группы: на процессы, в которых теплоёмкость больше нуля, и на процессы, в которых теплоёмкость меньше нуля.

7)Уравнение состояния Уравнение, устанавливающее функциональную зависимость между величинами свойств, определяющих состояние системы, называют уравнением состояния. Если известно уравнение состояния системы, то для описания ее состояния не обязательно знать численные значения всех свойств системы. Так, например, уравнение Клапейрона–Менделеева является уравнением состояния идеального газа: РV = nRT где Р – давление, V – объем, n – число молей идеального газа, Т – его абсолютная температура и R– универсальная газовая постоянная. Из уравнения следует, что для определения состояния идеального газа достаточно знать численные значения любых трех из четырех величин Р,V,n,T. ^ Функции состояния Свойства, величины которых при переходе системы из одного состояния в другое зависят только от начального и конечного состояния системы и не зависят от пути перехода, получили название функций состояния. К ним относятся, например, давление, объем, температура системы.