Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
РГР по технологии оборудования отрасли.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.07 Mб
Скачать

6.4 График крутящего момента .

Для построения графика изменения момента крутящего на кривошипном валу необходимо нагрузочный график в функции пути P(S) перестроить в график с зависимостью P от угла поворота кривошипа α. Для этого для всех характерных точек пути S нагрузочного графика нужно определить соответствующие углы поворота кривошипа α. Это можно сделать спомощью зависимости [2]:

(6.4.1)

Рис. 6.4.1 – Перевод графика P(s) в график Р(а).

Площадь сечения дает усилие деформации Р=85 кН. Та же параллельная линия пересекается с графиком перемещений S( ). Из точки пересечения опускаем перпендикуляр на ось углов и находим угол поворота кривошипа =27°, соответствующий перемещению 4 мм.

Аналогичным образом определяется соответствие перемещения ползуна усилию деформации и углу поворота кривошипа для нескольких характерных точек графика. Полученные значения и Р переносим на рис. 6. 4.2 .

Рис. 6.4.2

1 – график изменения силы Р( ); 2 – график изменения приведённого плеча

Крутящий момент на кривошипном валу определяется по формуле

(6.4.2)

где - усилие деформации при i-м угле поворота кривошипа , H;

- текущее значение приведенного плеча.

Для построения графика крутящего момента используем рис. 6.4. Внесем в табл. 6.4.1 значения силы для разных углов взятые с рис. 6.4.

Таблица 6.4.1 – Данные к расчету крутящего момента.

рад

10̊

15̊

17̊

21̊

23̊

25̊

30̊

, м

7,02

11

14,5

18

19

22

24

25

28,4

, м

0

35

106

230

250

250

225

175

0

, Нм

0

385

1450

4140

4750

5500

5400

4375

0

Перемножим силу на плечо , результаты внесем в табл. 6.4.1.

По полученным результатам строим график крутящего момента на кривошипном валу (см. рис. 6.4.3).

Рис. 6.4.3 – График крутящего момента.

6.5 Построение графика приведенного плеча силы.

Момент на кривошипном валу равен произведению усилия Рд на приведенное плечо (формула 6.4.2).

Приведенное плечо силы в реальном механизме определяется как

сумма приведенных относительного плеча идеальной машины и плеча

трения :

(6.5.1)

Приведенное относительное плечо идеальной машины зависит oт положения кривошипа, фиксируемого углом и расчитывается для каждого значения :

=R (sin + sin ), (6.5.2)

где R – радиус кривошипа;

𝜆 – коэффициент длины шатуна.

Второй член суммы выражения (6.5.1) - приведенное плечо трения для разных схем кривошипных валов определяется по разным формулам. Так, для двухстоечных прессов [1, с.643]:

(6.5.3)

где коэффициент трения в подшибнике скольжения;

для универсальных прессов;

для горячештамповочных прессов;

для автоматов, где применяется жидкосная

циркуляционная смазка;

радиус коренных подшипников кривошипного вала;

радиусы верхней и нижней головок шатуна соответственно.

Формула для расчета приведенного относительного плеча трения в одностоечных прессах имеет вид:

, (6.5.4)

В результате расчетов, выполненных в п. 4 установлено:

=70 мм; =60 мм; = 70 мм; = 40 мм.

Для определения расстояний между точками приложения сил (расстояние между расчетными опорами) необходимо выполнить эскизную компоновку вала (рис. 6.5.1).

Таким образом,

0,05 70 + 60 + (1+0,08)70 + 0,08 40] = 7,02 (мм).

Результаты расчетов сведены в первые четыре строки табл. 6.5.1.

На рис. 6.4.2 строим графики приведенного плеча силы .

Рис. 6.5.1 – Эскизная компоновка кривошипного вала.

Таблица 6.5.1 – Данные к расчёту и

рад

10̊

20̊

30̊

0

0,174

0,342

0,5

0

0,342

0,643

0,866

0

0,187

0,368

0,535

, мм

7,2

14,5

21,74

28,42

, м

7,02

14,5

21,7

28,4