
- •Технология и техника методов повышения нефтеотдачи
- •Введение. Предмет и задачи курса
- •Добыча нефти из месторождения в процессе его разработки
- •Факторы, влияющие на нефтеотдачу
- •1. Физико-геологические параметры пласта
- •1.1 Условия залегания в пластах нефти, воды и газа
- •1.2 Коллекторские свойства терригенных горных пород
- •1.3 Коллекторские свойства карбонатных (трещиноватых) пород
- •1.4 Физико-механические и тепловые свойства горных пород
- •1.5 Физико-химические свойства природных газов
- •1.5.1. Уравнение состояния газов
- •1.6. Свойства пластовой нефти и воды
- •1.7. Виды пластовой энергии. Режим разработки нефтяных и газовых залежей
- •1.8. Закономерности притока нефти и газа в скважины при различных режимах разработки пласта
- •1.9. Гидродинамические исследования пластов
- •1.10. Виды неоднородности пластов и методы ее изучения
- •2. Анализ работ по эффективности применения методов увеличения нефтеотдачи
- •3. Технология и методы извлечения остаточной нефти
- •3.1. Источники пластовой энергии, действующие в залежи
- •3.2. . Поверхностные явления при фильтрации пластовых жидкостей.
- •3.3. Дроссельный эффект при движении жидкостей и газов в пористой среде
- •3.4. Схема вытеснения из пласта нефти водой и газом
- •3.5. Нефтеотдача пластов при различных условиях дренирования
- •3.6. Роль капиллярных процессов при вытеснении нефти водой из пористых сред
- •3.7. Использование теории капиллярных явлений для установления зависимости нефтеотдачи от различных факторов
- •3.8. Зависимость нефтеотдачи от скорости вытеснения нефти водой
- •3.9. Компонентоотдача газовых и газоконденсатных месторождений
- •3.10. Методы увеличения извлекаемых запасов нефти
- •3.11. Моющие и нефтевытесняющие свойства вод
- •3.12. Обработка воды поверхностно-активными веществами
- •3.13. Применение углекислого газа для увеличения нефтеотдачи пластов
- •3.14. Вытеснение нефти из пласта растворами полимеров
- •3.15. Щелочное и термощелочное заводнение
- •3.16. Мицеллярные растворы
- •3.17. Термические способы увеличения нефтеотдачи
- •3.18. Условия взаиморастворимости углеводородов оторочки с нефтью и газом
- •3.19. Извлечение нефти газом высокого давления
- •4. Разработка нефтяных месторождений с использованием заводнения
- •4.1. Разработка месторождений с использованием заводнения
- •4.1.1.Законтурное заводнение
- •4.1.2. Приконтурное заводнение
- •4.1.3. Внутриконтурное заводнение
- •4.2. Циклическое воздействие при заводнении пластов
- •4.2.1. Механизм процесса.
- •4.3. Размещение скважин
- •4.4. Потребности в воде для заводнения нефтяных залежей
- •4.4.1. Охрана окружающей среды.
- •4.4.2. Подготовка и свойства нагнетаемой воды.
- •4.5. Контроль за заводнением.
- •4.6 Причины и пути преждевременного обводнения.
- •4.7. Методы борьбы с обводнением
- •4.8. Классификация изоляционных работ и методов изоляции
- •4.9. Нарушения обсадных колонн и цементного кольца
- •4.10. Отключение отдельных пластов
- •4.11. Ограничение притока воды в трещиноватых и трещиновато-пористых пластах
- •4.12. Регулирование профиля приемистости воды в нагнетательных скважинах
- •4.13. Методы повышения нефтеотдачи при заводнении пластов
- •4.13.1. Классификация методов увеличения нефтеотдачи пластов
- •4.13.2. Назначение методов повышения нефтеотдачи пластов
- •4.13.3. Потенциальные возможности и критические факторы методов увеличения нефтеотдачи пластов
- •4.14. Направления и фазы развития методов увеличения нефтеотдачи пластов
- •4.14.1. Развитие технологии извлечения нефти по вертикали
- •4.15. Принципы внедрения методов на месторождениях
- •4.15.1. . Критерии применимости методов увеличения нефтеотдачи пластов
- •4.16. Общие критерии всех методов
- •4.16.1. Методы увеличения нефтеотдачи пластов в зависимости от геолого-физических условий
- •4.17. Активный водонапорный режим.
- •4.18. Вязкость нефти
- •4.19. Жесткость и соленость воды
- •4.20. Глинистость коллектора
- •4.21. Дополнительные критерии применимости методов увеличения нефтеотдачи пластов
- •4.22. Эффективность методов увеличения нефтеотдачи пластов
- •4.23. Оценка технологического эффекта на поздней стадии разработки
- •4.24. Оценка экономического эффекта
- •4.25. Физико-химические методы, улучшающие заводнение
- •4.25.1. Заводнение с пав
- •4.25.2. Адсорбция пав (концентрация)
- •4.25.3.Технология и система разработки
- •4.25.4. Технологические этапы и процессы, связанные с внедрением пав
- •4.25.5. Применение неиногенных водорастворимых пав
- •4.25.6. Недостатки метода пав
- •4.25.7. Полимерное заводнение
- •4.25.8. Механизм процесса
- •4.25.9. Адсорбция полимера пористой средой
- •4.25.10. Деструкция (разрушение) молекул полимера
- •4.25.11.Технология процесса
- •4.25.12.Недостатки метода полимерного заводнения
- •4.25.13. Применение биополимеров для увеличения нефтеотдачи
- •4.25.14. Щелочное заводнение
- •4.25.15.Технология и системы разработки
- •5.1.Химическое заводнение
- •5.2.Полимеры
- •5.4.Щелочи
- •5.5.Регулирование профиля приемистости или притока
- •5.6.Нагнетательные скважины
- •5.7.Добывающие скважины
- •5.8.Операции
- •5.9. Воздействие на пласт мицеллярными растворами
- •5.9.1.Механизм действия мицеллярных растворов
- •5.9.2. Недостатки метода
- •5.10. Воздействие на пласты гелеобразующих композиций химреагентов
- •5.11.Организация безопасного применения химреагентов
- •5.11.1.Источники загрязнения
- •5.11.2.Контроль за изменением физико-химических свойств воды
- •5.11.3.Утилизация отходов нефтепродуктов и хим.Реагентов
- •6. Газовые методы
- •6.1.Использование диоксида углерода для повышения нефтеотдачи пласта
- •6.1.1.Механизм вытеснения
- •6.1.2.Способы закачки
- •6.1.3. .Свойства диоксида углерода
- •Смеси с со2
- •6.1.4.Гидратообразование
- •6.1.5.Коррозия
- •6.1.6.Системы разработки
- •6.1.7.Недостатки метода
- •6.2.Технология со2 для пно
- •5.2.1.Основные источники со2
- •6.2.2.Схема получения со2 из продукции газовых месторождений
- •6.2.3..Системы транспортировки и закачки со2
- •7. Технология воздействия на пласт физическими полями
- •7.1.Тепловые методы
- •7.2.Вытеснение нефти с применением внутрипластового горения
- •7.2.1. Недостатки метода:
- •7.3.Вытеснение нефти паром
- •7.3.1. Недостатки:
- •7.4.Циклическое нагнетание пара.
- •7.4.1. Технология пароциклического воздействия
- •7.5.Тепловые методы воздействия на пласт.
- •7.6.Теплофизические методы воздействия
- •7.6.1.Термоакустическая обработка
- •7.6.2. Импульсно-ударное и вибрационное воздействие
- •7.7. Вибросейсмическое воздействие
- •Воздействие на призабойную зону скважин с целью повышения нефтеотдачи
- •8.1. Механические методы воздействия на пзп
- •8.1.1.Гидравлический разрыв пласта
- •8.1.1.2. Применение гидроразрыва пласта
- •8.1.1.3. Этапы оптимизации проведения грп на объекте
- •8.1.1.4. Основные понятия о методе гидравлического разрыва пласта
- •8.1.1.5. Задачи, решаемые при гидроразрыве
- •8.1.1.6. Цель гидравлического разрыва
- •8.1.1.7. Направление трещины разрыва
- •8.1.1.8. Жидкости разрыва
- •8.1.1.9. Реология жидкостей
- •8.1.1.10. Измерение вязкости
- •8.1.1.11. Регулирование фильтруемости жидкости
- •Несущая способность жидкости по проппанту
- •8.1.1.12. Удаление и определение количества жидкости
- •8.1.1.13. Свойства расклинивающих агентов
- •8.1.1.13.1. Испытание на проницаемость
- •8.1.1.13.2. Типы проппантов
- •8.1.1.14. Техника и технология гидравлического разрыва пласта
- •8.1.1.15. Специальные агрегаты и технические средства, применяемые при грп
- •8.1.1.16. Подземное оборудование, применяемое при грп
- •8.1.1.17. .Жидкость разрыва и расклинивающие агенты
- •8.1.1.18.. Критерии выбора скважин для проведения грп
- •8.1.1.18. . Технология проведения грп
- •8.1.1.19.Оценка технологической эффективности проведения грп
- •8.2. Химические методы воздействия на призабойную зону пласта
- •8.2.1.Технология воздействия на пзп
- •График изменения давления в пласте
- •8.2.2. Характеристика вертикального лифта
- •8.2.6. Технологический процесс закачки композиции
- •Список использованных источников
- •Содержание
- •Условные обозначения
8.1.1.13.1. Испытание на проницаемость
При выборе необходимых типов и размеров проппанта весьма важно определить его проницаемость. Прежде при испытаниях проппантов применялись камеры радиальной фильтрации. Однако некоторые принципиальные сложности, связанные с течениями, не подчиняющимися закону Дарси, и весьма низкие, не поддающиеся измерению, перепады давления не позволяли получать надежные результаты испытаний. Несовершенство радиальных камер привело к разработке линейных фильтрационных камер.
8.1.1.13.2. Типы проппантов
Первым материалом, который использовался для удержания трещины в раскрытом состоянии, был кремнистый песок. По мере развития технологии становилось ясно, что некоторые типы песка лучше других.
Кроме того, были созданы искусственные проппанты, пригодные для использования там, где естественные пески непригодны.
1) Керамические проппанты
Существует два типа керамических проппантов: агломерированный боксит и проппанты промежуточной прочности. Проницаемость последних близка к проницаемости агломерированного боксита, плотность же их ниже, чем у боксита, но чуть выше, чем у песка.
Агломерированный боксит - это высокопрочный проппант, разработанный компанией "Экссон продакшн рисерч". Изготавливают его из высококачественных импортных бокситовых руд. Процесс изготовления включает измельчение руды на очень мелкие частицы, преобразование первичной руды в сферические частицы нужного размера и обжиг их в печи при достаточно высокой температуре, вызывающей процесс агломерации. Конечный продукт обычно содержит 85% Al2O3 . Остальные 15% составляют оксиды железа, титана и кремния. Удельная плотность его 3,65 по сравнению с плотностью песка 2,65. Применяются агломерированные бокситы в основном в глубоких (глубже 3500 м) скважинах.
2) Керамики промежуточной плотности
Эти проппанты отличаются от агломерированных бокситов, прежде всего, своим составом. Содержание оксида алюминия в них ниже, содержание кремния - выше, а удельная плотность составляет 3,15. При давлениях до 80 Мпа по проницаемости они близки к агломерированным бокситам. Поэтому в большинстве случаев, благодаря более низкой стоимости, ими заменяют бокситы.
3) Керамики низкой плотности
Эти проппанты изготавливаются так же, как и другие керамики. Главное их отличие - состав. Они содержат 49% Al2O3 , 45% SiO2 , 2% TiO2 и следы других оксидов. Плотность этих проппантов равна 2,72 , то есть они наиболее распространенные проппанты благодаря их цене, прочности плотности, близкой к плотности песка.
8.1.1.14. Техника и технология гидравлического разрыва пласта
Технология ГРП включает следующие операции: промыву скважины; спуск в скважину высокопрочных НКТ с пакером и якорем на нижнем конце; обвязку и опрессовку на определение приемистости скважины закачкой жидкости; закачку по НКТ в пласт жидкости-разрыва, жидкости песконосителя и продавочной жидкости; демонтаж оборудования и пуск скважины в работу.
По технологическим схемам проведения различают однократный, направленный (поинтервальный) и многократный ГРП.
При однократном гидроразрыве под давлением закачиваемой жидкости оказываются все вскрытые перфорацией пласты одновременно, при направленном - лишь выбранный пласт или пропласток (интервал), имеющий, например, заниженную продуктивность, а при многократном ГРП осуществляется воздействие последовательно на каждый в отдельности пласт или пропласток.
Проектирование технологии ГРП в основном сводится к следующему. Применительно к конкретным условиям выбирают технологическую схему процесса, рабочие жидкости и расклинивающий агент. При однократном ГРП, исходя из опыта, принимают 5-10т песка. Концентрацию песка в носителе устанавливают в зависимости от ее удерживающей способности. При использовании воды она составляет 40-50кг/м3. Тогда по количеству и концентрации песка рассчитывают количество жидкости песконосителя. На основании опытных данных обычно используют 5-10м3 жидкости-разрыва. Объем продавочной жидкости равен объему обсадной колонны и труб, по которым проводится закачка в пласт жидкости песконосителя.
Минимальный расход закачки жидкости должен составлять не менее 2м3/мин и может быть оценен при образовании вертикальной и горизонтальной трещин соответственно по формулам:
.
где Qгор – мин. расходы, л/с; h – толщина пласта, см; Wверт, Wгор – ширина верт. и гор. трещины, см; µ - вязкость жидкости, мПа х с; Rт – радиус гориз. трещины, см.
Давление ГРП пласта устанавливают по опыту или оценивают по формуле:
РГРП=рr + р
где рГРП – заб. давление разрыва пласта; рr =Hпg – горное давление; р – прочность породы пласта на разрыв в условиях всестороннего сжатия; H – глубина залегания пласта; п – средняя плотность вышележащих горных пород, равная 2200-2600 кг/м3, в среднем 2300 кг/м3; g – ускорение свободного падения.
Давление нагнетания на устье скважины:
РУ = рГРП + Δртр - рс
где Δртр –потери давления на трение в трубах; рс – гидростатическое давление столба жидкости в скважине.
Если давление нагнетания рУ больше допустимого устьевого давления рУдоп, то на НКТ над кровлей продуктивного пласта устанавливают пакер якорем. Допустимое давление рУдоп принимается как наибольшее из двух давлений, вычисленных по формуле Ламэ и с использованием формулы Яковлева-Шумилова.
В осадочных горных породах обычно образуются субвертикальные трещины, длина которых достигает первых десятков метров, а раскрытие - нескольких мм, реже см. ГРП вызывает возрастание дебитов в 1,5-2 раза и более. Для повышения эффективности ГРП в карбонатных породах его сочетают с кислотной обработкой пород. Давление разрыва плохо поддается теоретическому предсказанию, поскольку зависит от многих причин: напряжений в породе, ее прочности, уже существующей трещиноватости, угла наклона пласта и т.д. Обычно избыточное давление подбирается эмпирически и колеблется от 0,1 до 1,5 (в среднем примерно 0,8) гидростатического.