
- •Технология и техника методов повышения нефтеотдачи
- •Введение. Предмет и задачи курса
- •Добыча нефти из месторождения в процессе его разработки
- •Факторы, влияющие на нефтеотдачу
- •1. Физико-геологические параметры пласта
- •1.1 Условия залегания в пластах нефти, воды и газа
- •1.2 Коллекторские свойства терригенных горных пород
- •1.3 Коллекторские свойства карбонатных (трещиноватых) пород
- •1.4 Физико-механические и тепловые свойства горных пород
- •1.5 Физико-химические свойства природных газов
- •1.5.1. Уравнение состояния газов
- •1.6. Свойства пластовой нефти и воды
- •1.7. Виды пластовой энергии. Режим разработки нефтяных и газовых залежей
- •1.8. Закономерности притока нефти и газа в скважины при различных режимах разработки пласта
- •1.9. Гидродинамические исследования пластов
- •1.10. Виды неоднородности пластов и методы ее изучения
- •2. Анализ работ по эффективности применения методов увеличения нефтеотдачи
- •3. Технология и методы извлечения остаточной нефти
- •3.1. Источники пластовой энергии, действующие в залежи
- •3.2. . Поверхностные явления при фильтрации пластовых жидкостей.
- •3.3. Дроссельный эффект при движении жидкостей и газов в пористой среде
- •3.4. Схема вытеснения из пласта нефти водой и газом
- •3.5. Нефтеотдача пластов при различных условиях дренирования
- •3.6. Роль капиллярных процессов при вытеснении нефти водой из пористых сред
- •3.7. Использование теории капиллярных явлений для установления зависимости нефтеотдачи от различных факторов
- •3.8. Зависимость нефтеотдачи от скорости вытеснения нефти водой
- •3.9. Компонентоотдача газовых и газоконденсатных месторождений
- •3.10. Методы увеличения извлекаемых запасов нефти
- •3.11. Моющие и нефтевытесняющие свойства вод
- •3.12. Обработка воды поверхностно-активными веществами
- •3.13. Применение углекислого газа для увеличения нефтеотдачи пластов
- •3.14. Вытеснение нефти из пласта растворами полимеров
- •3.15. Щелочное и термощелочное заводнение
- •3.16. Мицеллярные растворы
- •3.17. Термические способы увеличения нефтеотдачи
- •3.18. Условия взаиморастворимости углеводородов оторочки с нефтью и газом
- •3.19. Извлечение нефти газом высокого давления
- •4. Разработка нефтяных месторождений с использованием заводнения
- •4.1. Разработка месторождений с использованием заводнения
- •4.1.1.Законтурное заводнение
- •4.1.2. Приконтурное заводнение
- •4.1.3. Внутриконтурное заводнение
- •4.2. Циклическое воздействие при заводнении пластов
- •4.2.1. Механизм процесса.
- •4.3. Размещение скважин
- •4.4. Потребности в воде для заводнения нефтяных залежей
- •4.4.1. Охрана окружающей среды.
- •4.4.2. Подготовка и свойства нагнетаемой воды.
- •4.5. Контроль за заводнением.
- •4.6 Причины и пути преждевременного обводнения.
- •4.7. Методы борьбы с обводнением
- •4.8. Классификация изоляционных работ и методов изоляции
- •4.9. Нарушения обсадных колонн и цементного кольца
- •4.10. Отключение отдельных пластов
- •4.11. Ограничение притока воды в трещиноватых и трещиновато-пористых пластах
- •4.12. Регулирование профиля приемистости воды в нагнетательных скважинах
- •4.13. Методы повышения нефтеотдачи при заводнении пластов
- •4.13.1. Классификация методов увеличения нефтеотдачи пластов
- •4.13.2. Назначение методов повышения нефтеотдачи пластов
- •4.13.3. Потенциальные возможности и критические факторы методов увеличения нефтеотдачи пластов
- •4.14. Направления и фазы развития методов увеличения нефтеотдачи пластов
- •4.14.1. Развитие технологии извлечения нефти по вертикали
- •4.15. Принципы внедрения методов на месторождениях
- •4.15.1. . Критерии применимости методов увеличения нефтеотдачи пластов
- •4.16. Общие критерии всех методов
- •4.16.1. Методы увеличения нефтеотдачи пластов в зависимости от геолого-физических условий
- •4.17. Активный водонапорный режим.
- •4.18. Вязкость нефти
- •4.19. Жесткость и соленость воды
- •4.20. Глинистость коллектора
- •4.21. Дополнительные критерии применимости методов увеличения нефтеотдачи пластов
- •4.22. Эффективность методов увеличения нефтеотдачи пластов
- •4.23. Оценка технологического эффекта на поздней стадии разработки
- •4.24. Оценка экономического эффекта
- •4.25. Физико-химические методы, улучшающие заводнение
- •4.25.1. Заводнение с пав
- •4.25.2. Адсорбция пав (концентрация)
- •4.25.3.Технология и система разработки
- •4.25.4. Технологические этапы и процессы, связанные с внедрением пав
- •4.25.5. Применение неиногенных водорастворимых пав
- •4.25.6. Недостатки метода пав
- •4.25.7. Полимерное заводнение
- •4.25.8. Механизм процесса
- •4.25.9. Адсорбция полимера пористой средой
- •4.25.10. Деструкция (разрушение) молекул полимера
- •4.25.11.Технология процесса
- •4.25.12.Недостатки метода полимерного заводнения
- •4.25.13. Применение биополимеров для увеличения нефтеотдачи
- •4.25.14. Щелочное заводнение
- •4.25.15.Технология и системы разработки
- •5.1.Химическое заводнение
- •5.2.Полимеры
- •5.4.Щелочи
- •5.5.Регулирование профиля приемистости или притока
- •5.6.Нагнетательные скважины
- •5.7.Добывающие скважины
- •5.8.Операции
- •5.9. Воздействие на пласт мицеллярными растворами
- •5.9.1.Механизм действия мицеллярных растворов
- •5.9.2. Недостатки метода
- •5.10. Воздействие на пласты гелеобразующих композиций химреагентов
- •5.11.Организация безопасного применения химреагентов
- •5.11.1.Источники загрязнения
- •5.11.2.Контроль за изменением физико-химических свойств воды
- •5.11.3.Утилизация отходов нефтепродуктов и хим.Реагентов
- •6. Газовые методы
- •6.1.Использование диоксида углерода для повышения нефтеотдачи пласта
- •6.1.1.Механизм вытеснения
- •6.1.2.Способы закачки
- •6.1.3. .Свойства диоксида углерода
- •Смеси с со2
- •6.1.4.Гидратообразование
- •6.1.5.Коррозия
- •6.1.6.Системы разработки
- •6.1.7.Недостатки метода
- •6.2.Технология со2 для пно
- •5.2.1.Основные источники со2
- •6.2.2.Схема получения со2 из продукции газовых месторождений
- •6.2.3..Системы транспортировки и закачки со2
- •7. Технология воздействия на пласт физическими полями
- •7.1.Тепловые методы
- •7.2.Вытеснение нефти с применением внутрипластового горения
- •7.2.1. Недостатки метода:
- •7.3.Вытеснение нефти паром
- •7.3.1. Недостатки:
- •7.4.Циклическое нагнетание пара.
- •7.4.1. Технология пароциклического воздействия
- •7.5.Тепловые методы воздействия на пласт.
- •7.6.Теплофизические методы воздействия
- •7.6.1.Термоакустическая обработка
- •7.6.2. Импульсно-ударное и вибрационное воздействие
- •7.7. Вибросейсмическое воздействие
- •Воздействие на призабойную зону скважин с целью повышения нефтеотдачи
- •8.1. Механические методы воздействия на пзп
- •8.1.1.Гидравлический разрыв пласта
- •8.1.1.2. Применение гидроразрыва пласта
- •8.1.1.3. Этапы оптимизации проведения грп на объекте
- •8.1.1.4. Основные понятия о методе гидравлического разрыва пласта
- •8.1.1.5. Задачи, решаемые при гидроразрыве
- •8.1.1.6. Цель гидравлического разрыва
- •8.1.1.7. Направление трещины разрыва
- •8.1.1.8. Жидкости разрыва
- •8.1.1.9. Реология жидкостей
- •8.1.1.10. Измерение вязкости
- •8.1.1.11. Регулирование фильтруемости жидкости
- •Несущая способность жидкости по проппанту
- •8.1.1.12. Удаление и определение количества жидкости
- •8.1.1.13. Свойства расклинивающих агентов
- •8.1.1.13.1. Испытание на проницаемость
- •8.1.1.13.2. Типы проппантов
- •8.1.1.14. Техника и технология гидравлического разрыва пласта
- •8.1.1.15. Специальные агрегаты и технические средства, применяемые при грп
- •8.1.1.16. Подземное оборудование, применяемое при грп
- •8.1.1.17. .Жидкость разрыва и расклинивающие агенты
- •8.1.1.18.. Критерии выбора скважин для проведения грп
- •8.1.1.18. . Технология проведения грп
- •8.1.1.19.Оценка технологической эффективности проведения грп
- •8.2. Химические методы воздействия на призабойную зону пласта
- •8.2.1.Технология воздействия на пзп
- •График изменения давления в пласте
- •8.2.2. Характеристика вертикального лифта
- •8.2.6. Технологический процесс закачки композиции
- •Список использованных источников
- •Содержание
- •Условные обозначения
8.1. Механические методы воздействия на пзп
8.1.1.Гидравлический разрыв пласта
В настоящее время в разработку широко вовлекаются трудноизвлекаемые запасы нефти, приуроченные к низкопроницаемым, слабодренируемым, неоднородным и расчлененным коллекторам. Одним из эффективных методов повышения продуктивности скважин, вскрывающих такие пласты, и увеличения темпов отбора нефти из них, является гидравлический разрыв пласта (ГРП). Гидравлический разрыв может быть определен как механический метод воздействия на продуктивный пласт, при котором порода разрывается по плоскостям минимальной прочности благодаря воздействию на пласт давления, создаваемого закачкой в пласт флюида. Флюиды, посредством которых с поверхности на забой скважины передается энергия, необходимая для разрыва, называются жидкостями разрыва. После разрыва под воздействием давления жидкости трещина увеличивается, возникает ее связь с системой естественных трещин, не вскрытых скважиной, и с зонами повышенной проницаемости; таким образом, расширяется область пласта, дренируемая скважиной. В образованные трещины жидкостями разрыва транспортируется зернистый материал (проппант), закрепляющий трещины в раскрытом состоянии после снятия избыточного давления.
В результате ГРП кратно повышается дебит добывающих или приемистость нагнетательных скважин за счет снижения гидравлических сопротивлений в призабойной зоне и увеличения фильтрационной поверхности скважины, а также увеличивается конечная нефтеотдача за счет приобщения к выработке слабо дренируемых зон и пропластков.
Наиболее широкое распространение получил локальный гидроразрыв как эффективное средство воздействия на призабойную зону скважин. При этом бывает достаточным создание трещин длиной 10...20 м с закачкой десятков кубических метров жидкости и единиц тонн проппанта. В этом случае дебит скважин увеличивается в 2 - 3 раза.
Проведение гидроразрыва с образованием протяженных трещин приводит к увеличению не только проницаемости призабойной зоны, но и охвата пласта воздействием, вовлечению в разработку дополнительных запасов нефти и повышению нефтеизвлечения в целом. При этом возможно снижение текущей обводненности добываемой продукции. Оптимальная длина закрепленной трещины при проницаемости пласта 0,01...0,05 мкм2 обычно составляет 40...60 м, а объем закачки - от десятков до сотен кубических метров жидкости и от единиц до десятков тонн проппанта.
Наряду с этим применяется селективный гидроразрыв, позволяющий вовлечь в разработку и повысить продуктивность низкопроницаемых слоев.
8.1.1.2. Применение гидроразрыва пласта
Впервые в нефтяной практике гидравлический разрыв был произведен в 1947 г. в США. Технология и теоретические представления о процессе ГРП были описаны в работе Ж. Кларка в 1948 г., после чего эта технология быстро приобрела широкое распространение. К концу 1955 г. в США было проведено более 100000 ГРП. По мере совершенствования теоретических знаний о процессе и улучшения технических характеристик оборудования, жидкостей разрыва и расклинивающих материалов успешность операций трещинообразования достигла 90 %. К 1968 г. в мире было произведено более миллиона операций. В США максимум операций по стимулированию скважин методом ГРП был отмечен в 1955 г. - примерно 4500 ГРП/мес, к 1972 г. число операций уменьшилось до 1000 ГРП/мес, и к 1990 г. уже стабилизировалось на уровне 1500 операций/мес.
Технология применения ГРП в первую очередь основана на знании механизма возникновения и распространения трещин, что позволяет прогнозировать геометрию трещины и оптимизировать ее параметры. Первые достаточно простые модели, определяющие связь между давлением жидкости разрыва, пластической деформацией породы и результирующими длиной и раскрытием трещины , отвечали потребностям практики до тех пор, пока операции ГРП не требовали вложения больших средств. Внедрение глубокопроникающего и массированного ГРП, требующего большого расхода жидкостей разрыва и проппанта, привело к необходимости создания более совершенных двух- и трехмерных моделей трещинообразования, позволяющих более достоверно прогнозировать результаты обработки.
Важнейшим фактором успешности процедуры ГРП является качество жидкости разрыва и проппанта. Главное назначение жидкости разрыва - передача с поверхности на забой скважины энергии, необходимой для раскрытия трещины, и транспортировка проппанта вдоль всей трещины. Основными характеристиками системы "жидкость разрыва - проппант" являются :
• реологические свойства "чистой" жидкости и жидкости, содержащей проппант;
• инфильтрационные свойства жидкости, определяющие ее утечки в пласт в ходе гидроразрыва и при переносе проппанта вдоль трещины;
• способность жидкости обеспечить перенос проппанта к концам трещины во взвешенном состоянии без его преждевременного осаждения;
• возможность легкого и быстрого выноса жидкости разрыва для обеспечения минимального загрязнения упаковки проппанта и окружающего пласта;
• совместимость жидкости разрыва с различными добавками, предусмотренными технологией, возможными примесями и пластовыми жидкостями;
• физические свойства проппанта.
Технологические жидкости гидроразрыва должны обладать достаточной динамической вязкостью для создания трещин высокой проводимости за счет их большого раскрытия и эффективного заполнения проппантом; иметь низкие фильтрационные утечки для получения трещин необходимых размеров при минимальных затратах жидкости; обеспечивать минимальное снижение проницаемости зоны пласта, контактирующей с жидкостью разрыва; обеспечивать низкие потери давления на трение в трубах; иметь достаточную для обрабатываемого пласта термостабильность и высокую сдвиговую стабильность, т.е. устойчивость структуры жидкости при сдвиге; легко выноситься из пласта и трещины гидроразрыва после обработки; быть технологичными в приготовлении и хранении в промысловых условиях; иметь низкую коррозионную активность; быть экологически чистыми и безопасными в применении; иметь относительно низкую стоимость.
Первые жидкости разрыва были на нефтяной основе, однако с конца 50-х годов начали применять жидкости на водной основе, наиболее распространенные из которых - гуаровая смола и гидроксипропилгуар. В настоящее время в США более 70 % всех ГРП производится с использованием этих жидкостей. Гели на нефтяной основе используются в 5 % случаев, пены со сжатым газом применяют в 25 % всех ГРП. Для повышения эффективности гидроразрыва в жидкости разрыва добавляют различные присадки, в основном это антифильтрационные агенты и агенты снижения трения.
Неудачи при проведении гидроразрыва в низкопроницаемых газовых пластах часто обусловлены медленным выносом жидкости разрыва и блокированием ею трещины. В результате начальный дебит газа после ГРП может оказаться на 80 % ниже установившегося по прошествии времени, так как увеличение дебита скважины происходит крайне медленно по мере очистки трещины - в течение недель и месяцев. В таких пластах особенно актуально использование смеси углеводородной жидкости разрыва и сжиженной углекислоты, либо сжиженного СО с добавкой азота. Двуокись углерода вводится в пласт в сжиженном состоянии, а выносится в виде газа. Это позволяет ускорить вынос жидкости разрыва из пласта и предотвратить такие негативные эффекты, наиболее выраженные в низкопроницаемых газовых коллекторах, как блокирование трещины жидкостью разрыва, ухудшение фазовой проницаемости для газа вблизи трещины, изменение капиллярного давления и смачиваемости породы и т.п. Низкая вязкость таких жидкостей разрыва компенсируется при проведении операций ГРП более высоким темпом нагнетания.
Современные материалы, используемые для закрепления трещин в раскрытом состоянии - проппанты - можно разделить на два вида - кварцевые пески и синтетические проппанты средней и высокой прочности. К физическим характеристикам проппантов, которые влияют на проводимость трещины, относятся такие параметры, как прочность, размер гранул и гранулометрический состав, качество (наличие примесей, растворимость в кислотах), форма гранул (сферичность и округлость) и плотность.
Первым и наиболее широко используемым материалом для закрепления трещин являются пески, плотность которых составляет приблизительно 2,65 г/см 2 . Пески обычно используются при гидроразрыве пластов, в которых напряжение сжатия не превышает 40 МПа. Среднепрочными являются керамические проппанты плотностью 2,7...3,3 г/см 3 используемые при напряжении сжатия до 69 МПа. Сверхпрочные проппанты, такие как спеченный боксит и окись циркония, используются при напряжении сжатия до 100 МПа, плотность этих материалов составляет 3,2...3,8 г/см 3. Использование сверхпрочных проппантов ограничивается их высокой стоимостью.
Кроме того, в США применяется так называемый суперпесок - кварцевый песок, зерна которого покрыты специальными смолами, повышающими прочность и препятствующими выносу частиц раскрошившегося проппанта из трещины. Плотность суперпеска составляет 2,55 г/см3. Производятся и используются также синтетические смолопокрытые проппанты.
Прочность является основным критерием при подборе проппантов для конкретных пластовых условий с целью обеспечения длительной проводимости трещины на глубине залегания пласта. В глубоких скважинах минимальное напряжение -горизонтальное, поэтому образуются преимущественно вертикальные трещины. С глубиной минимальное горизонтальное напряжение возрастает приблизительно на 19 МПа/км. Поэтому по глубине проппанты имеют следующие области применения: кварцевые пески - до 2500 м; проппанты средней прочности - до 3500 м; проппанты высокой прочности - свыше 3500 м.
Наиболее часто применяют проппанты с размерами гранул 0,425...0,85 мм (20/40 меш), реже 0,85... 1,7 мм (12/20 меш), 0,85...1,18 мм (16/20 меш), 0,212...0,425 мм (40/70 меш). Выбор нужного размера зерен проппанта определяется целым комплексом факторов. Чем крупнее гранулы, тем большей проницаемостью обладает упаковка проппанта в трещине. Однако использование проппанта крупной фракции сопряжено с дополнительными проблемами при его переносе вдоль трещины. Прочность проппанта снижается с увеличением размеров гранул. Кроме того, в слабосцементированных коллекторах предпочтительным оказывается использование проппанта более мелкой фракции, так как за счет выноса из пласта мелкодисперсных частиц упаковка крупнозернистого проппанта постепенно засоряется и ее проницаемость снижается.
В связи с большим разнообразием жидкостей разрыва и проппантов, имеющихся на американском рынке, Американским нефтяным институтом (API) разработаны стандартные методики для определения свойств этих материалов (API RP39; Prud'homme, 1984, 1985, 1986 - для жидкостей разрыва, и API RP60 - для проппантов).
Данные, необходимые для подготовки ГРП, можно подразделить на три группы :
• геолого-физические свойства пласта (проницаемость, пористость, насыщенность, пластовое давление, положение газонефтяного и водонефтяного контактов, петрография пород);
• характеристики геометрии и ориентации трещины (минимальное горизонтальное напряжение, модуль Юнга, вязкость и плотность жидкости разрыва, коэффициент Пуассона, сжимаемость породы и т.п.);
• свойства жидкости разрыва и проппанта.