
- •Технология и техника методов повышения нефтеотдачи
- •Введение. Предмет и задачи курса
- •Добыча нефти из месторождения в процессе его разработки
- •Факторы, влияющие на нефтеотдачу
- •1. Физико-геологические параметры пласта
- •1.1 Условия залегания в пластах нефти, воды и газа
- •1.2 Коллекторские свойства терригенных горных пород
- •1.3 Коллекторские свойства карбонатных (трещиноватых) пород
- •1.4 Физико-механические и тепловые свойства горных пород
- •1.5 Физико-химические свойства природных газов
- •1.5.1. Уравнение состояния газов
- •1.6. Свойства пластовой нефти и воды
- •1.7. Виды пластовой энергии. Режим разработки нефтяных и газовых залежей
- •1.8. Закономерности притока нефти и газа в скважины при различных режимах разработки пласта
- •1.9. Гидродинамические исследования пластов
- •1.10. Виды неоднородности пластов и методы ее изучения
- •2. Анализ работ по эффективности применения методов увеличения нефтеотдачи
- •3. Технология и методы извлечения остаточной нефти
- •3.1. Источники пластовой энергии, действующие в залежи
- •3.2. . Поверхностные явления при фильтрации пластовых жидкостей.
- •3.3. Дроссельный эффект при движении жидкостей и газов в пористой среде
- •3.4. Схема вытеснения из пласта нефти водой и газом
- •3.5. Нефтеотдача пластов при различных условиях дренирования
- •3.6. Роль капиллярных процессов при вытеснении нефти водой из пористых сред
- •3.7. Использование теории капиллярных явлений для установления зависимости нефтеотдачи от различных факторов
- •3.8. Зависимость нефтеотдачи от скорости вытеснения нефти водой
- •3.9. Компонентоотдача газовых и газоконденсатных месторождений
- •3.10. Методы увеличения извлекаемых запасов нефти
- •3.11. Моющие и нефтевытесняющие свойства вод
- •3.12. Обработка воды поверхностно-активными веществами
- •3.13. Применение углекислого газа для увеличения нефтеотдачи пластов
- •3.14. Вытеснение нефти из пласта растворами полимеров
- •3.15. Щелочное и термощелочное заводнение
- •3.16. Мицеллярные растворы
- •3.17. Термические способы увеличения нефтеотдачи
- •3.18. Условия взаиморастворимости углеводородов оторочки с нефтью и газом
- •3.19. Извлечение нефти газом высокого давления
- •4. Разработка нефтяных месторождений с использованием заводнения
- •4.1. Разработка месторождений с использованием заводнения
- •4.1.1.Законтурное заводнение
- •4.1.2. Приконтурное заводнение
- •4.1.3. Внутриконтурное заводнение
- •4.2. Циклическое воздействие при заводнении пластов
- •4.2.1. Механизм процесса.
- •4.3. Размещение скважин
- •4.4. Потребности в воде для заводнения нефтяных залежей
- •4.4.1. Охрана окружающей среды.
- •4.4.2. Подготовка и свойства нагнетаемой воды.
- •4.5. Контроль за заводнением.
- •4.6 Причины и пути преждевременного обводнения.
- •4.7. Методы борьбы с обводнением
- •4.8. Классификация изоляционных работ и методов изоляции
- •4.9. Нарушения обсадных колонн и цементного кольца
- •4.10. Отключение отдельных пластов
- •4.11. Ограничение притока воды в трещиноватых и трещиновато-пористых пластах
- •4.12. Регулирование профиля приемистости воды в нагнетательных скважинах
- •4.13. Методы повышения нефтеотдачи при заводнении пластов
- •4.13.1. Классификация методов увеличения нефтеотдачи пластов
- •4.13.2. Назначение методов повышения нефтеотдачи пластов
- •4.13.3. Потенциальные возможности и критические факторы методов увеличения нефтеотдачи пластов
- •4.14. Направления и фазы развития методов увеличения нефтеотдачи пластов
- •4.14.1. Развитие технологии извлечения нефти по вертикали
- •4.15. Принципы внедрения методов на месторождениях
- •4.15.1. . Критерии применимости методов увеличения нефтеотдачи пластов
- •4.16. Общие критерии всех методов
- •4.16.1. Методы увеличения нефтеотдачи пластов в зависимости от геолого-физических условий
- •4.17. Активный водонапорный режим.
- •4.18. Вязкость нефти
- •4.19. Жесткость и соленость воды
- •4.20. Глинистость коллектора
- •4.21. Дополнительные критерии применимости методов увеличения нефтеотдачи пластов
- •4.22. Эффективность методов увеличения нефтеотдачи пластов
- •4.23. Оценка технологического эффекта на поздней стадии разработки
- •4.24. Оценка экономического эффекта
- •4.25. Физико-химические методы, улучшающие заводнение
- •4.25.1. Заводнение с пав
- •4.25.2. Адсорбция пав (концентрация)
- •4.25.3.Технология и система разработки
- •4.25.4. Технологические этапы и процессы, связанные с внедрением пав
- •4.25.5. Применение неиногенных водорастворимых пав
- •4.25.6. Недостатки метода пав
- •4.25.7. Полимерное заводнение
- •4.25.8. Механизм процесса
- •4.25.9. Адсорбция полимера пористой средой
- •4.25.10. Деструкция (разрушение) молекул полимера
- •4.25.11.Технология процесса
- •4.25.12.Недостатки метода полимерного заводнения
- •4.25.13. Применение биополимеров для увеличения нефтеотдачи
- •4.25.14. Щелочное заводнение
- •4.25.15.Технология и системы разработки
- •5.1.Химическое заводнение
- •5.2.Полимеры
- •5.4.Щелочи
- •5.5.Регулирование профиля приемистости или притока
- •5.6.Нагнетательные скважины
- •5.7.Добывающие скважины
- •5.8.Операции
- •5.9. Воздействие на пласт мицеллярными растворами
- •5.9.1.Механизм действия мицеллярных растворов
- •5.9.2. Недостатки метода
- •5.10. Воздействие на пласты гелеобразующих композиций химреагентов
- •5.11.Организация безопасного применения химреагентов
- •5.11.1.Источники загрязнения
- •5.11.2.Контроль за изменением физико-химических свойств воды
- •5.11.3.Утилизация отходов нефтепродуктов и хим.Реагентов
- •6. Газовые методы
- •6.1.Использование диоксида углерода для повышения нефтеотдачи пласта
- •6.1.1.Механизм вытеснения
- •6.1.2.Способы закачки
- •6.1.3. .Свойства диоксида углерода
- •Смеси с со2
- •6.1.4.Гидратообразование
- •6.1.5.Коррозия
- •6.1.6.Системы разработки
- •6.1.7.Недостатки метода
- •6.2.Технология со2 для пно
- •5.2.1.Основные источники со2
- •6.2.2.Схема получения со2 из продукции газовых месторождений
- •6.2.3..Системы транспортировки и закачки со2
- •7. Технология воздействия на пласт физическими полями
- •7.1.Тепловые методы
- •7.2.Вытеснение нефти с применением внутрипластового горения
- •7.2.1. Недостатки метода:
- •7.3.Вытеснение нефти паром
- •7.3.1. Недостатки:
- •7.4.Циклическое нагнетание пара.
- •7.4.1. Технология пароциклического воздействия
- •7.5.Тепловые методы воздействия на пласт.
- •7.6.Теплофизические методы воздействия
- •7.6.1.Термоакустическая обработка
- •7.6.2. Импульсно-ударное и вибрационное воздействие
- •7.7. Вибросейсмическое воздействие
- •Воздействие на призабойную зону скважин с целью повышения нефтеотдачи
- •8.1. Механические методы воздействия на пзп
- •8.1.1.Гидравлический разрыв пласта
- •8.1.1.2. Применение гидроразрыва пласта
- •8.1.1.3. Этапы оптимизации проведения грп на объекте
- •8.1.1.4. Основные понятия о методе гидравлического разрыва пласта
- •8.1.1.5. Задачи, решаемые при гидроразрыве
- •8.1.1.6. Цель гидравлического разрыва
- •8.1.1.7. Направление трещины разрыва
- •8.1.1.8. Жидкости разрыва
- •8.1.1.9. Реология жидкостей
- •8.1.1.10. Измерение вязкости
- •8.1.1.11. Регулирование фильтруемости жидкости
- •Несущая способность жидкости по проппанту
- •8.1.1.12. Удаление и определение количества жидкости
- •8.1.1.13. Свойства расклинивающих агентов
- •8.1.1.13.1. Испытание на проницаемость
- •8.1.1.13.2. Типы проппантов
- •8.1.1.14. Техника и технология гидравлического разрыва пласта
- •8.1.1.15. Специальные агрегаты и технические средства, применяемые при грп
- •8.1.1.16. Подземное оборудование, применяемое при грп
- •8.1.1.17. .Жидкость разрыва и расклинивающие агенты
- •8.1.1.18.. Критерии выбора скважин для проведения грп
- •8.1.1.18. . Технология проведения грп
- •8.1.1.19.Оценка технологической эффективности проведения грп
- •8.2. Химические методы воздействия на призабойную зону пласта
- •8.2.1.Технология воздействия на пзп
- •График изменения давления в пласте
- •8.2.2. Характеристика вертикального лифта
- •8.2.6. Технологический процесс закачки композиции
- •Список использованных источников
- •Содержание
- •Условные обозначения
4.25.10. Деструкция (разрушение) молекул полимера
Деструкция может быть химической, термической, механической или сдвиговой и микробиологической.
Химическая – происходит вследствии взаимодействия кислорода воздуха с полимерными молекулами.
Термическая – наступает при температуре выше 130 градусов.
Механическая – наступает при высоких скоростях движения, т.е. при движении растворов полимеров по трубам, насосам и в призабойной зоне пласта.
4.25.11.Технология процесса
Полимерные растворы применяются в виде оторочек размером до 40-50 % от объема пор. Размер оторочки, концентрация раствора и тип полимера должны выбираться исходя из неоднородности пласта и солевого состава пластовой воды. При перемешивании полимерных растворов с пластовой соленой водой происходит разрушение структуры раствора и снижение вязкости.
Давление для нагнетания полимерных растворов выше чем при заводнении. Система размещения скважин для полимерного заводнения может оставаться такой же как при заводнении, если обеспечиваются необходимые давления нагнетания, темпы отбора нефти. Но вполне логично использование более плотных сеток скважин для полимерного заводнения, которое может быть только внутриконтурным.
Испытания полимерных растворов для увеличения нефтеотдачи проводились на нескольких месторождениях в Куйбышевской области, Башкирии, Татарии, Казахстане.
Исходя из всех проводимых работ, в качестве средней надежной удельной дополнительной добычи нефти при полимерном заводнении можно принять 200-300 т на 1т полимера.
4.25.12.Недостатки метода полимерного заводнения
- резко снижается продуктивность нагнетательных скважин по причине резкого роста вязкости в призабойных зонах
- не возможность использования полимеров для глубокозалегающих пластов, сложенных малопроницаемыми коллекторами и имеющих высокую температуру (более 90 градусов).
- незначительный эффект от закачки полимеров в однородный пласт, с маловязкой нефтью
- метод мало эффективен на поздней стадии разработки
- и для пластов, с большим содержанием солей
4.25.13. Применение биополимеров для увеличения нефтеотдачи
Проводившиеся с 1988 года работы по импортозамещению полимеров для Российской нефтяной промышленности увенчались успехом. Создан и прошел промысловую апробацию отечественный биополимер - Продукт БП-92.
Предлагаемая технология как раз и предназначена для воздействия на объектах с сильно выраженной неоднородностью, как по толщине, так и по простиранию, со средней проницаемостью более 0,10 - 0,20 мкм и с температурами до 130° С.
Важно, чтобы закачиваемая в пласт композиция не ухудшала фильтрационных характеристик низкопроницаемой нефтенасыщенной зоны пласта. В обеспечение указанных требований, применительно к условиям месторождений Западной Сибири разработаны четыре базовых состава на основе биополимера ПРОДУКТ БП-92.
Состав/характеристика коллектора |
Температура |
Проницаемость, мкм2 |
Трещиноватость |
Степень выработки |
|
|
выше |
ниже |
|
|
|
|
|
|
|
|
|
Состав на основе БП-92 и |
+ |
- |
Не менее |
Допустима |
Любая, макс. |
модифицированного картофельного |
|
|
0,010 |
-i- |
эффективн. |
крахмала (патент №2073789) |
|
|
|
|
на начальной |
|
|
|
|
|
стадии |
Состав на основе БП-92 и хромкалиевых |
- |
+ |
Не менее |
Допустима |
|
Квасцов (патент № 2128283) |
|
|
0,010 |
+ |
|
Состав на основе БП-92 и бентонита |
+ |
+ |
Более |
Желательна |
Более 70% |
(патент № 2128283) |
|
|
0,050 |
+ |
|
Состав на основе БП-92 и отходов |
+ |
+ |
Более |
+ |
При резком |
слоистого пластика - «сломель М» (патент |
|
|
0,050 |
заколонные |
обводнении |
№ 2128284) |
|
|
|
перетоки |
(кинжальные |
|
|
|
|
|
прорывы) |
Используемые композиции на основе ПРОДУКТА БП-92 защищены патентами РФ.
Отработан технологический прием, обеспечивающий необходимую селективность.
Этот прием основан на зависимости изменения профиля приемистости от давления. Обычно, при уменьшении закачки снижение приемистости происходит неравномерно. Приемистость низкопроницаемых интервалов уменьшается сильнее, чем высокопроницаемых. При пониженном давлении закачки (на десятки атмосфер ниже устьевого давления при нагнетании в пласт жидкости) низкопроницаемые (нефтенасыщенные) пропластки перестают принимать закачиваемую воду. Для того, чтобы закачиваемая биополимерная композиция попала преимущественно в промытую водонасыщенную зону закачка композиции в пласт производится при давлении на 5-10 атмосфер ниже давления в линии ППД.
К настоящему времени биополимерные технологии прошли промысловую апробацию:
-обработка призабойной зоны добывающих скважин биополимерными составами с целью ограничения водопритока проводилась на месторождениях Украины (терригенные коллектора НГДУ "Черниговнефтегаз"), ПО Татнефть, и НГДУ "Кинельнефть" (карбонатные трещиноватые коллектора), а также на некоторых других месторождениях. Снижение обводненности в этих экспериментах достигало в отдельных случаях 40% (в зависимости от предыстории и начальной обводненности), суточный прирост добычи нефти в среднем 4-5 тонн (в отдельных случаях до 20 тонн - в зависимости от дебита по жидкости и начальной обводненности).
В Татарии дополнительная добыча нефти на одну скв.операцию, в среднем составляет 530 тонн (или около 300 тонн нефти на тонну товарной формы биополимера),
-закачка биополимерных композиций через нагнетательные скважины с целью изменения профиля приемистости и увеличения охвата заводнением (регулирование фильтрационных потоков) проводилось на ряде месторождений Западной Сибири:
• Талинское месторождение ("КОНДПЕТРОЛЕУМ"), Поточное, Покачевское и Нантеганское месторождения ("ЛАНГЕПАСНЕФТЕГАЗ"), Тарасовское и Барсуковское месторождения ("ПУРНЕФТЕГАЗ"), Ершовое и Самотлорское месторождения («НИЖНЕВАРТОВСКНЕФТЕГАЗ»), Западно-Ноябрьское месторождение («НОЯБРЬСКНЕФТЕГАЗ»).
Наиболее полно апробация биополимерных технологий проводилась на месторождениях «МЕГИОННЕФТЕГАЗ'а». Работы выполнялись на Покамасовском месторождении (пласт Ю1) Северо-Покурском месторождении (пласты Б6 и Б8), Аганском месторождении (Б8 и Б9), Южно-Аганском месторождении (Б9), Ватинском месторождении (A1-2 и Б8), Мегионском месторождении (А1-2 и Б8), Мыхпайском месторождении (A1). При закачке биополимерных композиций в нагнетательные скважины на опытном участке через один - три месяца после закачки наблюдается прогрессирующее снижение обводненности и прирост добычи нефти. Дополнительная добыча от проведенных обработок во многих случаях превышает 500 тонн нефти на 1 тонну товарной формы биополимера ПРОДУКТ БП-92.
После обработки, в течение 2-3 месяцев имеет место увеличение средних дебитов, максимальная амплитуда эффекта достигает 100%, в дальнейшем происходит постепенное уменьшение эффекта.
Применение полимерных композиций позволяет подключать к заводнению неохваченные ранее участки пласта. На ранних стадиях разработки, при опережающем обводнении продукции за счет кинжальных прорывов нагнетаемой в пласт воды по высокопроницаемым пропласткам, эффективность применения биополимерных композиций может оказаться более высокой (до 100% прироста добычи). На ранних стадиях разработки нефтяного месторождения эффект от биополимерного воздействия выражается в абсолютном приросте добычи нефти. Однако, по мере выработки запасов эффект может проявляться в снижении темпов падения добычи нефти. В этом случае необходимо учитывать естественное падение добычи. Таким образом, использование биополимерных композиций на поздней стадии выработки запасов позволяет существенно замедлить темп падения добычи, существенно продлить срок разработки и повысить нефтеотдачу пластов.
Ситуация изменилась в последние годы в связи с тем, что в России налажено производство биополимера ПРОДУКТ БП-92. Прежде всего, доказана возможность применения нового биополимера и композиций на его основе в процессах нефтедобычи на объектах с достаточно широким спектром геолого-физических условий. Отличительная особенность растворов этого биополимера - устойчивость к сдвиговой деградации (возможность прохождения через центробежные насосы без ухудшения реологических свойств) и термостабильность композиций (до 130°). Второе существенное свойство растворов биополимера - влияние не только на коэффициент охвата заводнением, но и увеличение коэффициента нефтевытеснения. В лабораторных экспериментах на кернах и насыпных моделях показано увеличение нефтевытесняющей способности по сравнению с водой на 6-16% (в зависимости от начального нефтенасыщения образца и свойств нефти). Совокупность перечисленных факторов заставляет вернуться к вопросу о целесообразности биополимерного заводнения. Важно, что цена Продукта БП-92 почти на порядок ниже цены полиакриламида.
Биополимеры в виде постферментационной жидкости (ПРОДУКТ БП-92) прошли промышленную апробацию в Западной Сибири при решении задач выравнивания профиля приемистости и ограничения водопритока. Дополнительная добыча нефти при этом составляет от 250 до 3000 тонн на одну тонну ПРОДУКТА БП-92 (в зависимости от геолого-физических условий, стадии разработки и др.факторов), среднее значение удельной эффективности - более 500 тонн нефти/тонну БП-92. При многократных обработках (более 3-5) удельная эффективность снижается до уровня 100-500 тонн нефти/тонну Продукта БП-92. (по данным ОАО «Славнефть-Мегионнефтегаз», «Нижневартовскнефтегаз», «РИТЭК»). Прирост извлекаемых запасов при проведении работ по выравниванию профиля приемистости не превышает (с учетом повторных/многократных обработок) 1%.