
- •Технология и техника методов повышения нефтеотдачи
- •Введение. Предмет и задачи курса
- •Добыча нефти из месторождения в процессе его разработки
- •Факторы, влияющие на нефтеотдачу
- •1. Физико-геологические параметры пласта
- •1.1 Условия залегания в пластах нефти, воды и газа
- •1.2 Коллекторские свойства терригенных горных пород
- •1.3 Коллекторские свойства карбонатных (трещиноватых) пород
- •1.4 Физико-механические и тепловые свойства горных пород
- •1.5 Физико-химические свойства природных газов
- •1.5.1. Уравнение состояния газов
- •1.6. Свойства пластовой нефти и воды
- •1.7. Виды пластовой энергии. Режим разработки нефтяных и газовых залежей
- •1.8. Закономерности притока нефти и газа в скважины при различных режимах разработки пласта
- •1.9. Гидродинамические исследования пластов
- •1.10. Виды неоднородности пластов и методы ее изучения
- •2. Анализ работ по эффективности применения методов увеличения нефтеотдачи
- •3. Технология и методы извлечения остаточной нефти
- •3.1. Источники пластовой энергии, действующие в залежи
- •3.2. . Поверхностные явления при фильтрации пластовых жидкостей.
- •3.3. Дроссельный эффект при движении жидкостей и газов в пористой среде
- •3.4. Схема вытеснения из пласта нефти водой и газом
- •3.5. Нефтеотдача пластов при различных условиях дренирования
- •3.6. Роль капиллярных процессов при вытеснении нефти водой из пористых сред
- •3.7. Использование теории капиллярных явлений для установления зависимости нефтеотдачи от различных факторов
- •3.8. Зависимость нефтеотдачи от скорости вытеснения нефти водой
- •3.9. Компонентоотдача газовых и газоконденсатных месторождений
- •3.10. Методы увеличения извлекаемых запасов нефти
- •3.11. Моющие и нефтевытесняющие свойства вод
- •3.12. Обработка воды поверхностно-активными веществами
- •3.13. Применение углекислого газа для увеличения нефтеотдачи пластов
- •3.14. Вытеснение нефти из пласта растворами полимеров
- •3.15. Щелочное и термощелочное заводнение
- •3.16. Мицеллярные растворы
- •3.17. Термические способы увеличения нефтеотдачи
- •3.18. Условия взаиморастворимости углеводородов оторочки с нефтью и газом
- •3.19. Извлечение нефти газом высокого давления
- •4. Разработка нефтяных месторождений с использованием заводнения
- •4.1. Разработка месторождений с использованием заводнения
- •4.1.1.Законтурное заводнение
- •4.1.2. Приконтурное заводнение
- •4.1.3. Внутриконтурное заводнение
- •4.2. Циклическое воздействие при заводнении пластов
- •4.2.1. Механизм процесса.
- •4.3. Размещение скважин
- •4.4. Потребности в воде для заводнения нефтяных залежей
- •4.4.1. Охрана окружающей среды.
- •4.4.2. Подготовка и свойства нагнетаемой воды.
- •4.5. Контроль за заводнением.
- •4.6 Причины и пути преждевременного обводнения.
- •4.7. Методы борьбы с обводнением
- •4.8. Классификация изоляционных работ и методов изоляции
- •4.9. Нарушения обсадных колонн и цементного кольца
- •4.10. Отключение отдельных пластов
- •4.11. Ограничение притока воды в трещиноватых и трещиновато-пористых пластах
- •4.12. Регулирование профиля приемистости воды в нагнетательных скважинах
- •4.13. Методы повышения нефтеотдачи при заводнении пластов
- •4.13.1. Классификация методов увеличения нефтеотдачи пластов
- •4.13.2. Назначение методов повышения нефтеотдачи пластов
- •4.13.3. Потенциальные возможности и критические факторы методов увеличения нефтеотдачи пластов
- •4.14. Направления и фазы развития методов увеличения нефтеотдачи пластов
- •4.14.1. Развитие технологии извлечения нефти по вертикали
- •4.15. Принципы внедрения методов на месторождениях
- •4.15.1. . Критерии применимости методов увеличения нефтеотдачи пластов
- •4.16. Общие критерии всех методов
- •4.16.1. Методы увеличения нефтеотдачи пластов в зависимости от геолого-физических условий
- •4.17. Активный водонапорный режим.
- •4.18. Вязкость нефти
- •4.19. Жесткость и соленость воды
- •4.20. Глинистость коллектора
- •4.21. Дополнительные критерии применимости методов увеличения нефтеотдачи пластов
- •4.22. Эффективность методов увеличения нефтеотдачи пластов
- •4.23. Оценка технологического эффекта на поздней стадии разработки
- •4.24. Оценка экономического эффекта
- •4.25. Физико-химические методы, улучшающие заводнение
- •4.25.1. Заводнение с пав
- •4.25.2. Адсорбция пав (концентрация)
- •4.25.3.Технология и система разработки
- •4.25.4. Технологические этапы и процессы, связанные с внедрением пав
- •4.25.5. Применение неиногенных водорастворимых пав
- •4.25.6. Недостатки метода пав
- •4.25.7. Полимерное заводнение
- •4.25.8. Механизм процесса
- •4.25.9. Адсорбция полимера пористой средой
- •4.25.10. Деструкция (разрушение) молекул полимера
- •4.25.11.Технология процесса
- •4.25.12.Недостатки метода полимерного заводнения
- •4.25.13. Применение биополимеров для увеличения нефтеотдачи
- •4.25.14. Щелочное заводнение
- •4.25.15.Технология и системы разработки
- •5.1.Химическое заводнение
- •5.2.Полимеры
- •5.4.Щелочи
- •5.5.Регулирование профиля приемистости или притока
- •5.6.Нагнетательные скважины
- •5.7.Добывающие скважины
- •5.8.Операции
- •5.9. Воздействие на пласт мицеллярными растворами
- •5.9.1.Механизм действия мицеллярных растворов
- •5.9.2. Недостатки метода
- •5.10. Воздействие на пласты гелеобразующих композиций химреагентов
- •5.11.Организация безопасного применения химреагентов
- •5.11.1.Источники загрязнения
- •5.11.2.Контроль за изменением физико-химических свойств воды
- •5.11.3.Утилизация отходов нефтепродуктов и хим.Реагентов
- •6. Газовые методы
- •6.1.Использование диоксида углерода для повышения нефтеотдачи пласта
- •6.1.1.Механизм вытеснения
- •6.1.2.Способы закачки
- •6.1.3. .Свойства диоксида углерода
- •Смеси с со2
- •6.1.4.Гидратообразование
- •6.1.5.Коррозия
- •6.1.6.Системы разработки
- •6.1.7.Недостатки метода
- •6.2.Технология со2 для пно
- •5.2.1.Основные источники со2
- •6.2.2.Схема получения со2 из продукции газовых месторождений
- •6.2.3..Системы транспортировки и закачки со2
- •7. Технология воздействия на пласт физическими полями
- •7.1.Тепловые методы
- •7.2.Вытеснение нефти с применением внутрипластового горения
- •7.2.1. Недостатки метода:
- •7.3.Вытеснение нефти паром
- •7.3.1. Недостатки:
- •7.4.Циклическое нагнетание пара.
- •7.4.1. Технология пароциклического воздействия
- •7.5.Тепловые методы воздействия на пласт.
- •7.6.Теплофизические методы воздействия
- •7.6.1.Термоакустическая обработка
- •7.6.2. Импульсно-ударное и вибрационное воздействие
- •7.7. Вибросейсмическое воздействие
- •Воздействие на призабойную зону скважин с целью повышения нефтеотдачи
- •8.1. Механические методы воздействия на пзп
- •8.1.1.Гидравлический разрыв пласта
- •8.1.1.2. Применение гидроразрыва пласта
- •8.1.1.3. Этапы оптимизации проведения грп на объекте
- •8.1.1.4. Основные понятия о методе гидравлического разрыва пласта
- •8.1.1.5. Задачи, решаемые при гидроразрыве
- •8.1.1.6. Цель гидравлического разрыва
- •8.1.1.7. Направление трещины разрыва
- •8.1.1.8. Жидкости разрыва
- •8.1.1.9. Реология жидкостей
- •8.1.1.10. Измерение вязкости
- •8.1.1.11. Регулирование фильтруемости жидкости
- •Несущая способность жидкости по проппанту
- •8.1.1.12. Удаление и определение количества жидкости
- •8.1.1.13. Свойства расклинивающих агентов
- •8.1.1.13.1. Испытание на проницаемость
- •8.1.1.13.2. Типы проппантов
- •8.1.1.14. Техника и технология гидравлического разрыва пласта
- •8.1.1.15. Специальные агрегаты и технические средства, применяемые при грп
- •8.1.1.16. Подземное оборудование, применяемое при грп
- •8.1.1.17. .Жидкость разрыва и расклинивающие агенты
- •8.1.1.18.. Критерии выбора скважин для проведения грп
- •8.1.1.18. . Технология проведения грп
- •8.1.1.19.Оценка технологической эффективности проведения грп
- •8.2. Химические методы воздействия на призабойную зону пласта
- •8.2.1.Технология воздействия на пзп
- •График изменения давления в пласте
- •8.2.2. Характеристика вертикального лифта
- •8.2.6. Технологический процесс закачки композиции
- •Список использованных источников
- •Содержание
- •Условные обозначения
3.10. Методы увеличения извлекаемых запасов нефти
Увеличение нефтеотдачи пластов — сложная проблема, для решения которой используется опыт, накопленный во всех областях нефтепромыслового дела. Извлекаемые запасы нефти и газа можно увеличить путем правильной расстановки скважин на залежи с учетом геологического строения пластов. Увеличения нефтеотдачи пластов можно добиться искусственно, развивая и поддерживая в залежи благоприятные физические условия, обеспечивающие наиболее эффективное вытеснение нефти из коллектора.
Поэтому везде, где это целесообразно по геологическим условиям и экономическим соображениям, необходимо создавать естественный или искусственный водонапорный режим вытеснения. Искусственно поддерживаемый водонапорный режим в залежи создают путем нагнетания воды с поверхности в пласт за контур нефтеносности или же в нефтяную часть пласта. Эффективность заводнения еще более повышается при добавлении в нагнетаемую в пласт воду специальных веществ, в результате чего улучшаются ее нефтевытесняющие свойства.
Методы поддержания пластового давления путем нагнетания в пласт воды или свободного газа, а также методы восполнения энергии в месторождениях с истощенными ее ресурсами (так называемые вторичные методы добычи нефти) не позволяют извлекать все запасы нефти. Поэтому продолжаются усиленные поиски новых методов увеличения нефтеотдачи. В основе их всегда лежат соответствующие физические закономерности, большая часть которых описана в предыдущих главах.
Например, лучше вытесняются из пласта маловязкие нефти. Поэтому некоторые методы увеличения нефтеотдачи пластом основаны ил искусственном введении в пласт тепла и теплоносителем для снижения вязкости пластовой нефти. Как известно, даже тяжелые битумы хорошо растворяются в некоторых легких углеводородных растворителях. Например бензин или жидкий пропан, способны удалять из пористой среды практически всю нефть. Это свойство растворителей используется для разработки методов увеличения нефтеотдачи путем нагнетания в пласт сжиженных газов. Несомненно, что дальнейшее изучение физических свойств пластовых жидкостей, физико-химии пласта и законов движения жидкостей в пористой среде приведет в будущем к получению новых методов повышения нефтеотдачи пластов.
3.11. Моющие и нефтевытесняющие свойства вод
Нами уже упоминалось о значении заводнения залежей, как одного из распространенных способов увеличения эффективности эксплуатации нефтяных месторождении. Однако и при заводнении нефтеотдача пласта редко превышает 60%. и поэтому дальнейшее увеличение ее при закачке воды в пласт является важнейшей задачей. Одним из способов решения этой проблемы может быть нагнетание в залежь вод, обладающих высокими вытесняющими и моющими свойствами.
Согласно современным представлениям механизм моющего действия веществ применительно к отмывке углеводородов от минералов определяется их способностью улучшать смачивающие свойства вод, уменьшать их поверхностное натяжение на границе с нефтью и другими поверхностями. Они должны быть разрушителями суспензий и эмульсий и т. д. Известно, что загущенная полимерами высоковязкая вода хорошо вытесняет нефть из породы, не обладая при этом особыми моющими свойствами
В зависимости от строения и свойств пласта, а также состояния жидкостей в пористой среде параметры, влияющие на нефтевытесняющие свойства, могут быть неодинаковы. Если, например, нефть в пористой среде находится в пленочном и рассеянном (капиллярно - удержанном) виде вследствие повышенного содержания остаточной воды, то лучшими вытесняющими свойствами в этом случае будет обладать вода, характеризующаяся низкими значениями поверхностного натяжения на границе с нефтью и хорошо смачивающая породу, т. е. вода, имеющая высокие моющие свойства. При заводнении трещиноватых коллекторов, как мы уже отмечали, лучшими нефтевытесняющими свойствами обладают воды с повышенными значениями натяжения смачивания , способные под действием капиллярных сил интенсивно проникать в нефтенасыщенные блоки. Обычная, не впитывающаяся в блоки вода при нагнетании в трещиноватый пласт прорывается в эксплуатационные скважины по трещинам, не вытесняя нефть из блоков. Чем интенсивнее идут процессы противоточной капиллярной пропитки водой блоков, тем лучше результат заводнения трещиноватых коллекторов. Следует, однако, учитывать, что при противоточной капиллярной пропитке нефтеотдача даже небольших блоков (диаметром 5—10 см) после длительного их контакта с водой редко достигает 35—50 %. Процесс противоточной капиллярной пропитки быстро затухает со временем вследствие образования в заводненной зоне блоков прочных водонефтяных смесей (и тем более прочных, чем выше значение ). Внутренние части блоков, огражденные от внешней области зоной водонефтяной смеси, длительное время могут сохранять повышенную нефтенасыщенность. Поэтому заводнение трещиноватых коллекторов водами, развивающими в пористой среде высокое капиллярное давление, следует рассматривать как средство извлечения лишь некоторого небольшого количества нефти (пока не опробованы более совершенные методы воздействия на трещинный коллектор).
По мнению некоторых исследователей, в условиях неоднородных по физическим свойствам зернистых коллекторов процессы капиллярного впитывания в нефтенасыщенные участки пласта и перераспределение жидкостей в поровом пространстве под действием капиллярных сил отрицательно влияют на нефтеотдачу из-за формирования при этом процессе в пористой среде водонефтяных смесей и из-за нарушения сплошности нефти. Менее интенсивно смеси образуются при заводнении неоднородного пласта водами, обладающими низкими значениями . Если это мнение справедливо, то лучшими нефтевытесняющими свойствами в условиях неоднородных зернистых коллекторов должны обладать воды с нейтральной смачиваемостью ( = 90°) — при этом значение и, следовательно, капиллярное давление в порах равны нулю (в статических условиях). Такие воды обладают слабыми моющими свойствами, но нефтевытесняющие свойства их более высокие, чем у других вод. процессы вытеснения с поверхности породы нефти водой или воды нефтью. Система устойчива при = 0. Поэтому в естественных пластах в течение геологических периодов контакта нефти и воды должны были протекать процессы, способствующие уменьшению свободной поверхностной энергии пластовой системы (взаимное растворение компонентов нефти и воды, адсорбция поверхностно-активных веществ на разных границах раздела и т. д.). За геологические периоды произошло необходимое перераспределение соответствующих компонентов между нефтью и водой и система приблизилась к нейтральной смачиваемости, насколько позволили состав и свойства пластовых жидкостей и горных пород.
Давно замечено, что нефтевытесняющая способность собственных пластовых вод (по сравнению с поверхностными) повышенная. Низкая нефтеотдача естественных коллекторов объясняется не плохими качествами пластовых вод, а неоднородностью строения пластов, наличием многочисленных зон, не промываемых водой. Пластовые воды, добываемые вместе с нефтью, следует использовать для нагнетания в разрезающие ряды. Отрицательное влияние посторонней пресной воды на приток нефти из пласта было замечено давно главным образом в процессе освоения нефтяных скважин и ввода их в эксплуатацию, а также при ремонтных работах, когда скважины промывались пресными водами. Анализ причин отрицательного влияния воды на приток нефти при вскрытии пласта дан Ф. И. Котяховым. Его исследованиями установлено, что одной из причин затруднения с освоением скважин и низкая их производительность являются проникновение в нефтяной пласт посторонней воды и образование в поровом пространстве призабойной зоны водонефтяных смесей.
Иногда считается, что состав и свойства нагнетаемой в пласт воды не играет роли, так как она быстро смешивается с остаточной водой и приобретает на фронте вытеснения свойства пластовой жидкости. Опыт, однако, показывает, что при небольшом содержании остаточной воды в коллекторе (10— 15 % от объема пор) нагнетаемая вода может продвигаться по пласту на значительные расстояния, не смешиваясь с остаточной.
Капиллярное давление, развиваемое менисками в пористой среде, можно уменьшить не только за счет смачивающих свойств, но также и при снижении поверхностного натяжения воды на границе с нефтью, например, путем обработки ее поверхностно-активными веществами. Тогда вода приобретает особо ценные качества — улучшаются одновременно ее вытесняющие и моющие свойства.