
- •Оглавление
- •Дорожно-строительные материалы, способы их получения и
- •Термодинамические свойства строительных материалов…………16
- •3. Физико-химические методы исследования (фхми) строительных
- •11. Характеристика коррозионных процессов в строительных материалах. Коррозия металлов…………………………………………..…103
- •11.4. Материалы, применяемые для защиты от коррозии……………………108
- •Введение
- •1. Дорожно-строительные материалы, спосообы их получения и свойства
- •1.1. Дисперсные материалы. Твердые дисперсные материалы. Жидкие дисперсные системы
- •1.2. Физико-механические свойства дорожно-строительных материалов
- •Физические и химические свойства материалов
- •1.3. Основы физико-химических исследований получения дорожно-строительных материалов с заданными свойствами
- •1.4. Физико-химические основы повышения качества дорожно-строительных материалов. Механохимическая активация твердых дисперсных материалов
- •Термодинамические свойства строительных материалов
- •2. 1 Основные понятия. Энергетические эффекты реакций
- •Энергетические эффекты реакций
- •2.2 Первый закон термодинамики
- •Для круговых процессов
- •Для изохорных процессов
- •Для изобарных процессов
- •2. 3. Стандартные энтальпии образования
- •2. 4. Закон Гесса
- •2. 5. Направленность процессов. Второй закон термодинамики
- •2. 6. Энтропия
- •2.7. Изобарно - изотермический потенциал. Мера химического сродства
- •3. Физико-химические методы исследования (фхми) строительных материалов и их классификация
- •3.1. Инструментальные методы исследования
- •3.2. Прямые и косвенные физико-химические методы исследования
- •3.3. Количественные определения способами: градуировочной функции (стандартных серий), стандартов (сравнения) или стандартных добавок
- •4. Органические (черные) вяжущие и материалы на их основе
- •4.1. Общие теоретические сведения
- •Этапы перегонки нефти
- •4.2. Состав, свойства и строение битумов
- •4.3. Структурные типы вязких дорожных битумов
- •4.4. Исследования влияния природы сырья и технологии приготовления на состав и структуру дорожных битумов
- •4.5 Физико-химические методы оценки структурных свойств битумов
- •4.6. Совместимость битумов. Теория судативных реакций
- •Классификация битумов по эксудативному потенциалу
- •Пути избежания судативных реакций
- •Теория методов определения эксудации и инсудации
- •4.7. Необратимые изменения свойств битума в условиях эксплуатации
- •Стадии старения битума
- •4.8. Адсорбционно-хроматографический анализ дорожных битумов
- •4.9. Оптические свойства битумов
- •4.10. Магнитные свойства битумов
- •Спектры электронного парамагнитного резонанса (эпр)
- •Вода является слабым электролитом; она слабо диссоциирует по уравнению:
- •Буферные растворы
- •Способы измерения pH
- •Стеклянный электрод
- •Определение рН в воде
- •5. Физико-химические основы применения и поверхностно-активных веществ . Классификация пав. Свойства водных растворов пав
- •5.1. Характеристика поверхностно- активных веществ (пав)
- •5.2. Классификация пав
- •Классификация пав по механизму действия
- •5.3. Свойства водных растворов пав Поверхностное натяжение
- •Адсорбция
- •Хемосорбции
- •Межфазное натяжение
- •Смачивание
- •6. Структурные особенности дорожного асфальтобетона и их взаимосвязь с эксплуатации свойствами автомобильных дорог
- •7. Регулирование структуры и свойств асфальтобетона, обеспечивающих эксплуатационные характеристики покрытия путем модификации битума
- •8. Физико-химические основы обоснования выбора полимерной и армирующей добавок в составе асфальтобетонов
- •9. Особенности технологии приготовления полимерно-армированного асфальтобетона
- •10. Полимерно-армированный асфальтобетон с добавкой пдд (полиэтилен-пропилен) и ее влияние на качественные показатели асфальтобетона
- •11. Характеристика коррозионных процессов в строительных материалах. Коррозия металлов
- •11.1. Виды коррозии материалов
- •11.2. Типы коррозионных разрушений
- •11. 3. Физико-химические методы исследования коррозии в строительных материалах
- •11.4. Материалы, применяемые для защиты от коррозии
- •12.Установление фазового состава минеральных материалов методом дифференциально-термического анализа
- •12.1. Сущность метода
- •12.2. Термопара простая и дифференциальная
- •12.3. Установка для проведения дифференциального термического анализа (дта)
- •I2.4. Оформление данных дта
- •12.5. Практическое применение дта
- •13. Установление фазового состава минеральных материалов методом рентгенофазового анализа
- •13.1. Сущность метода рентгенофазового анализа
- •13.2. Сборники дифракционных данных и работа с ними
- •14. Исследование процесса старения асфальтовяжущего по методике tfot (thin film oven test) согласно стандарту astm d 1754.
- •15. Исследование термоокислительного старения асфальтобетона модифицированного комплексной добавкой из резинополимерного модификатора и гидратной извести
- •16. Определение устойчивости асфальтобетонных смесей модифицированных резинополимерным модификатором рпм и гидратной известью усталостному разрушению на экспериментальной установке ДорТрансНии ргсу
- •Список литературы
11.2. Типы коррозионных разрушений
При равномерном распределении коррозионных разрушений по всей поверхности металла коррозию называют равномерной. Если же значительная часть поверхности металла свободна от коррозии и последняя сосредоточена на отдельных участках, то ее называют местной. Язвенная, точечная, щелевая, контактная, межкресталлическая коррозия - наиболее часто встречающиеся в практике типы местной коррозии. Коррозионное растрескивание возникает при одновременном воздействии на металл агрессивной среды и механических напряжений. В металле появляются трещины транскристаллитного характера, которые часто приводят к полному разрушению изделий. Последние 2 вида коррозионного разрушения наиболее опасны для конструкций, несущих механические нагрузки (мосты, тросы, рессоры, оси, автоклавы, паровые котлы и т.д.)
Электрохимическая коррозия в различных средах. Различают следующие типы электрохимической коррозии, имеющие наиболее важное практическое значение:
Коррозия в электролитах.
К этому типу относятся коррозия в природных водах (морской и пресной), а также различные виды коррозии в жидких средах. В зависимости от характера среды различают:
а) кислотную;
б) щелочную;
в) солевую;
г) морскую коррозию.
По условиям воздействия жидкой среды на металл этот тип коррозии также характеризуется как коррозия при полном погружении, при неполном погружении, при переменном погружении, имеющие свои характерные особенности.
2. Почвенная (грунтовая, подземная) коррозия - воздействие на металл грунта, который в коррозионном отношении должен рассматриваться как своеобразный электролит. Характерной особенностью подземной электрохимической коррозии является большое различие в скорости доставки кислорода (основной деполяризатор) к поверхности подземных конструкций в разных почвах (в десятки тысяч раз). Значительную роль при коррозии в почве играет образование и функционирование макрокоррозионных пар вследствие неравномерной аэрации отдельных участков конструкции, а также наличие в земле блуждающих токов. В ряде случаев на скорость электрохимической коррозии в подземных условиях оказывает существенное влияние также развитие биологических процессов в почве.
3. Атмосферная коррозия - коррозия металлов в условиях атмосферы, а также любого влажного газа; наблюдается под конденсационными видимыми слоями влаги на поверхности металла (мокрая атмосферная коррозия) или под тончайшими невидимыми адсорбционными слоями влаги (влажная атмосферная коррозия). Особенностью атмосферной коррозии является сильная зависимость ее скорости и механизма от толщины слоя влаги на поверхности металла или степени увлажнения образовавшихся продуктов коррозии.
4. Коррозия в условиях механического воздействия.
Этому типу разрушения подвергаются многочисленные инженерные сооружения, работающие как в жидких электролитах, так и в атмосферных и подземных условиях. Наиболее типичными видами подобного разрушения являются:
а) Коррозионное растрескивание; при этом характерно образование трещин, которые могут распространяться не только межкристаллитно, но также и транскристально. Примером подобного разрушения является щелочная хрупкость котлов, сезонное растрескивание латуней, а также растрескивание некоторых конструкционных высокопрочных сплавов.
б) Коррозионная усталость, вызываемая воздействием коррозионной среды и знакопеременных или пульсирующих механических напряжений. Этот вид разрушения также характерен образованием меж- и транскристаллитных трещин. Разрушения металлов от коррозионной усталости встречаются при эксплуатации различных инженерных конструкций (валов гребных винтов, рессор автомобилей, канатов, штанг глубинных насосов, охлаждаемых валков прокатных станов и др.).
в) Коррозионная кавитация, являющаяся обычно следствием энергичного механического воздействия коррозионной среды на поверхность металла. Подобное коррозионно-механическое воздействие может приводить к весьма сильным местным разрушениям металлических конструкций (например, для гребных винтов морских судов). Механизм разрушения от коррозионной кавитации близок к разрушению от поверхностной коррозионной усталости.
г) Коррозионная эрозия, вызываемая механическим истирающим воздействием другого твердого тела при наличии коррозионной среды или непосредственным истирающим действием самой коррозионной среды. Это явление иногда называют также коррозионным истиранием или фреттинг-коррозией.