- •Глава 2. Природные высокомолекулярные
- •2.1.2. Некоторые важные свойства природных макромолекул
- •2.1.3. Глобулярные и фибриллярные макромолекулы
- •2.1.4. Условия выделения природных макромолекул
- •2.1.5. Общие методы выделения
- •2.2. Каучук и подобные ему полиизопрены
- •2.2.1. Каучук в растительных тканях
- •2.2.2. Выделение и свойства каучука и гуттаперчи
- •2.2.3. Структурирование каучука (вулканизация)
- •2.3. Полисахариды, целлюлоза и ее производные
- •2.3.1. Целлюлоза в природе
- •2.3.2. Структура, размер и конфигурация макромолекул целлюлозы
- •2.3.3. Производные целлюлозы
- •2.3.4. Ферментативное расщепление целлюлозы
- •2.3.5. Гемицеллюлозы
- •2.3.6. Лигнин
- •2.4 Крахмал и гликоген
- •2.4.1. Распространенность в природе и выделение крахмала и гликогена
- •2.4.2. Молекулярная масса и структура амилозы, амилопектина и гликогена
- •2.5. Пектины
- •2.5.1. Распространенность в природе, структура и размер молекул
- •2.5.2. Застудневание пектина
- •2.6. Камеди и слизи. Полисахариды морских водорослей
- •2.6.1 Гуммиарабик
- •2.6.2. Трагакант, карайя и другие камеди
- •2.6.3. Слизи
- •2.6.4. Агар и другие полисахариды морских водорослей
- •2.6.5. Декстраны
- •2.7. Линейные полисахариды животного происхождения
- •2.7.1. Хитин
- •2.7.2. Хондроитинсерные кислоты
- •2.7.3. Гиалуроновая кислота и другие мукополисахариды
- •2.7.4. Гепарин
- •2.7.5. Полисахариды крови
- •2.8 Структура и конфигурация нативных и денатурированных белков
- •2.8.1. Сывороточный альбумин
- •2.8.2. Сывороточные -глобулины
- •2.8.3. Альбумины и глобулины птичьих яиц
- •2.8.4. Альбумины и глобулины растений
- •2.8.5. Гемоглобины
- •2.8.6. Миоглобины
- •2.8.7. Дыхательные белки низших видов
- •2.8.8. Шелк
- •2.8.9. Шерсть
- •2.8.10. Коллаген
- •2.8.11. Кератин и эпидермин
2.6.5. Декстраны
Декстраны представляют собой один из многих типов полисахаридов, синтезируемых микроорганизмами. Интерес к ним определен следующими факторами: определенные фракции частично гидролизованных декстранов можно использовать в качестве заменителей плазмы крови; декстраны легко доступны в чистом состоянии, и с ними легко обращаться. Бактерии Leuconostoc mesenteroides и аналогичные им легко культивируются в растворах сахарозы, содержащих другие питательные среды. Они синтезируют весьма разнообразные макромолекулы однородной структуры.
Макромолекулы декстрана построены из глюкоз, соединенных -1,6-глюкозидными связями. Цепи декстранов разветвлены, и на каждые 10 - 12 остатков глюкозы в среднем приходится одно разветвление.
Молекулярная масса гидролизованных декстранов находится в пределах 20000 – 250000. Характеристическая вязкость растворов декстранов показывает, что макромолекулы декстрана сильно свернуты в спираль и гибки.
2.7. Линейные полисахариды животного происхождения
Помимо ранее упоминавшихся гликогенов, существует большое количество полисахаридов, содержащихся в животных тканях – мукополисахаридов, представляющих собой аминодезоксиполисахариды, т. е. содержащие азот. Полисахариды крови содержат даже некоторые аминокислоты, представляя таким образом мостик между полисахаридами и белками.
2.7.1. Хитин
Имеются две главные скелетные системы, которые поддерживают клеточную структуру животных тканей – коллагеновые и хитиновые. Кол-лагеновый скелет преобладает у млекопитающих и других высших живых организмов, причем он откладывается на фосфате кальция. Хитин очень часто встречается у низших живых организмов, например у ракообразных и насекомых, где хитиновые структуры делаются твердыми благодаря отложениям карбоната кальция. Другие азотсодержащие полисахариды, например хондроитинсульфаты и гиалуронаты, тесно связаны со скелетными веществами. Коллаген является белком, и коллагеновый скелет имеет внутреннее мезодермальное происхождение, тогда как хитин – экзодермального происхождения и образует главным образом наружные оболочки, кутикулы и т. д. Однако следует указать на то, что роговое вещество насекомых и ракообразных представляет собой не чистый хитинкарбонат кальция, а сложную структуру. Хотя роговой слой этих кутикул является более или менее чистым хитинкарбонатом кальция (содержащим пигменты и небольшие количества других органических веществ), внутренние слои кутикулы содержат также белок. Кроме того, не все низшие живые организмы имеют только хитиновые скелеты; хитин встречается в гидроидных полипах, но не в гидроидных медузах, где преобладает коллаген. Существует также несколько типов слабо различающихся хитинов. У головоногих (моллюски, крабы, осьминоги) - и -хитины могут быть различными в разных частях тела. -Хитин заменяет коллаген, тогда как -хитин найден в соединении с коллагеновыми структурами. Хитин найден также в низших растениях, например мицелии и спорах грибов; присутствие хитина или целлюлозы в стенках клетки считается критерием для установления филогенетической связи между разновидностями этих организмов.
Н
аиболее
удобно получать хитин из панцирей крабов
или омаров, содержащих 20 – 25% хитина и
около 70% карбоната кальция. При полном
кислотном гидролизе хитина образуются
эквимолярные количества D-глюкозамина
и уксусной кислоты; выделение
N-ацетил-D-глюкозамина
при более умеренном кислотном или
ферментативном гидролизе указывает на
то, что цепи хитина состоят из этих
N-ацетил-D-глюкозаминных
звеньев:
Ферменты, способствующие гидролитическому расщеплению хитина, найдены в некоторых бактериях и плесенях, встречающихся в морских отложениях, почве, кишечнике морских животных и в улитках.
