Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Informatike.docx
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
84.29 Кб
Скачать

33. Численное решение нелинейного уравнения. Этапы решения. Классификация методов уточнения корня. Геометрический смысл, достоинства и недостатки каждого метода.

1.Метод перебора. При решении нелинейного уравнения методом перебора задаются начальное значение аргумента x=a и шаг h, который при этом определяет и точность нахождения корней нелинейного уравнения. Пока выполняется условие F(x)*F(x+h)>0 аргумент x увеличиваем на шаг h (x=x+h). Если произведение F(x)*F(x+h) становится отрицательным, то на интервале [x,x+h] существует решение уравнения. Структограмма метода приведена на рисунке.

Пока F(x)∙F(x+h)>0

Рис. Структограмма для метода

перебора

x=x+h

2.Метод половинного деления. При решении нелинейного уравнения методом половинного деления задаются интервал [a,b], на котором существует только одно решение, и желаемая точность ε. Затем определяется середина интервала с=(а+b)/2 и проверяется условие F(a)∙F(c)<0. Если указанное условие выполняется, то правую границу интервала b переносим в среднюю точку с (b=c). Если условие не выполняется, то в среднюю точку переносим левую границу(a=c). Деление отрезка пополам продолжается пока |b-a|>ε. Структограмма решения нелинейных уравнений методом половинного деления приведена на рисунке. 

Пока |b-a|>ε

c=(a+b)/2

F(a)∙F(c)<0

да

нет

b=c

a=c

  • Метод хорд. При решении нелинейного уравнения методом хорд задаются интервал [a,b], на котором существует только одно решение, и точность ε. Затем через две точки с координатами (a,F(a)) и (b,F(b)) проводим отрезок прямой линии (хорду) и определяем точку пересечения этой линии с осью абсцисс (точка c). Если при этом F(a)∙F(c)<0, то правую границу интервала переносим в точку с (b=c). Если указанное условие не выполняется, то в точку c переносится левая граница интервала (а=с). Поиск решения прекращается при достижении заданной точности |F(c)|< ε. Для определения точки пересечения хорды с осью абсцисс воспользуемся следующей формулой  (попытайтесь получить формулу самостоятельно).Структограмма метода хорд показана на рисунке.

    Пока |F(c)|>ε

    F(a)∙F(c)<0

    да

    нет

    b=c

    a=c

  • Метод касательных. При решении нелинейного уравнения методом касательных задаются начальное значение аргумента x0 и точность ε. Затем в точке(x0,F(x0)) проводим касательную к графику F(x) и определяем точку пересечения касательной с осью абсцисс x1. В точке (x1,F(x1)) снова строим касательную, находим следующее приближение искомого решения x2 и т.д. Указанную процедуру повторяем пока |F(xi)| > ε. Для определения точки пересечения (i+1) касательной с осью абсцисс воспользуемся следующей формулой  (получите формулу самостоятельно). Условие сходимости метода касательных F(x0)∙F''(x0)>0. Структограмма решения нелинейных уравнений методом касательных показана на рис.

    Пока |F(x)|>ε

    Рис. Структограмма для

    метода касательных

  • Метод хорд-касательных. Если в методе касательных производную функции F'(xi) заменить отношением конечных приращений, то получаем расчетную формулу для метода хорд-касательных . Порядок выполнения вычислений в данном методе аналогичен рассмотренному ранее.

  • Метод итераций. При решении нелинейного уравнения методом итераций воспользуемся записью уравнения в виде x=f(x). Задаются начальное значение аргумента x0 и точность ε. Первое приближение решения x1 находим из выражения x1=f(x0), второе - x2=f(x1) и т.д. В общем случае i+1 приближение найдем по формуле xi+1 =f(xi). Указанную процедуру повторяем пока |f(xi)|>ε. Условие сходимости метода итераций |f'(x)|<1. Структограмма метода итераций показана на рис.

Пока |f(xi)|>ε

Рис. Структограмма для метода итераций

xi+1 =f(xi)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]