- •Введение
- •1. Телекоммуникационные системы (тс)
- •1.1 Каналы, тракты, системы и сети передачи информации
- •1.2 Основные принципы построения телекоммуникационных сетей
- •1.2.1 Функциональные признаки
- •1.2.2 Иерархические признаки (территориальные)
- •1.2.3 Стандартизация телекоммуникационных сетей и систем
- •1.2.4 Социально-экономические проблемы построения тсс
- •2. Сигналы и каналы электрической связи
- •2.1 Сигналы электросвязи
- •2.1.1 Энергетические характеристики сигналов
- •2.1.2 Временные и спектральные характеристики первичных сигналов электросвязи
- •2.1.3 Параметры сигнала с точки зрения его передачи по каналу связи
- •2.1.4 Сравнительная характеристика сигналов электросвязи
- •2.2 Двусторонняя передача
- •2.2.1 Двусторонняя передача с 4-х проводным окончанием
- •2.2.2 Двусторонняя передача с 2-х проводным окончанием
- •2.3 Каналы связи
- •2.3.1 Аналоговые типовые каналы
- •3. Системы связи с частотным разделением каналов (чрк)
- •3.1 Формирование канальных и групповых сигналов
- •3.2 Организация линейных трактов
- •3.2.1 Выбор числа каналов
- •3.2.2 Методы организации двусторонних трактов
- •3.3 Коррекция линейных искажений
- •3.4 Помехи в аналоговых системах передачи
- •3.4.1 Классификация помех
- •3.4.2 Оценка действия помех
- •3.4.3 Нормирование помех (по itu-t)
- •3.4.4 Накопление собственных помех в линейном тракте
- •3.4.5 Переходные помехи
- •3.4.6 Нелинейные помехи
- •4 Цифровые системы передачи (цсп)
- •4.1 Принципы цифровой передачи информации
- •4.1.1 Структурная схема цсп
- •4.1.2 Цифровой сигнал
- •Дискретизация во времени;
- •Квантование по уровню;
- •Кодирование (импульсно-кодовая модуляция).
- •4.1.3 Группообразование
- •4.1.4 Линейное кодирование
- •4.1.5 Модуляция
- •Цифровой сигнал;
- •Амплитудная модуляция;
- •Частотная модуляция;
- •Фазовая модуляция
- •4.1.6 Оконечная станция цсп
- •4.1.7 Достоинства и недостатки цсп
- •4.2 Компандирование в цсп
- •4.3 Линейные коды
- •4.4 Синхронизация в цсп
- •4.4.1 Тактовая синхронизация
- •4.4.2 Цикловая синхронизация
- •4.5 Формирование группового сигнала
- •4.5.1 Межсимвольные искажения
- •4.5.2 Первичный цифровой сигнал (икм-30)
- •4.6 Шумы и помехи в цифровых системах передачи
- •4.6.1 Шумы дискретизации
- •4.6.2 Шумы квантования
- •4.6.3 Шумы незагруженного канала
- •4.6.4 Шумы ограничения
- •4.7 Объединение цифровых потоков
- •4.8 Плезиохронная цифровая иерархия
- •4.9 Синхронная цифровая иерархия (sdh)
- •5. Линии связи.
- •5.1 Кабельные линии связи.
- •5.2 Линии связи на симметричном кабеле.
- •Абоненты
- •5.3 Коаксиальные кабели
- •5.4 Волоконнооптические кабели
- •6 Распределение информации в цифровых системах передачи
- •6.1 Коммутация каналов и коммутация пакетов
- •6.2 Пространственная коммутация
- •6.3. Временная коммутация
- •6.4. Многозвенные системы коммутации.
- •6.5 Распределение информации в сетях передачи данных
- •6.5.1 Сети с коммутацией пакетов
- •6.5.2 Множественный доступ с контролем несущей и обнаружением коллизий
- •К другим станциям и концентраторам
- •6.5.3 Сети с коммутацией пакетов
- •6.5.4 Ip сети
- •6.5.5 Виртуальные соединения
- •7 Сети доступа
- •7. 1 Понятие сетей доступа
- •Транспортная
- •7.2 Доступ к телефонным сетям
- •Мини атс
- •7.3 Цифровые сети доступа
- •7.3.1. Абонентские линии
- •7.3.2. Цифровые коммутируемые линии.
- •Коррелятор
- •Диф. Система
- •7.3.3 Цифровые линии хDsl
- •7.3.4 Системы передачи (соединительные линии)
- •7.3.5 Узлы доступа.
- •7.4 Доступ к сетям передачи данных
- •7.5 Интеграция услуг и сетей доступа
- •7.5.1 Интеграция с помощью цифровых каналов (технология врк).
- •7.5.3 Сети доступа с применением волс
- •8. Основы построения и перспективы развития телекоммуникационных сетей.
- •8.1 Планирование сетей.
- •8.2 Примеры телекоммуникационных сетей.
- •8.2.1 Цифровая телекоммуникационная сеть sdh
- •8.2.2 Сеть передачи данных
- •8.3. Перспективы развития сетей.
- •Список использованной и рекомендуемой литературы.
6.5.3 Сети с коммутацией пакетов
Более совершенным, но и более сложным способом построения сетей является коммутация пакетов. Рассмотрим коммутацию в сетях Ethernet (рисунок 6.24).
Рисунок 6. 24 - Построение ЛВС на основе коммутатора
Основное отличие от сети на концентраторах заключается в том, что вместо них применены коммутаторы. В то же время все физические интерфейсы, размеры и формат кадра остались такими же, как и в классическом Ethernet.
Коммутатор Ethernet работает на канальном уровне на основе внутренней таблицы, связывающей порты коммутатора с МАС адресами, подключенных к ним устройств. Пусть, например, станция 1 с МАС адресом А посылает пакет к станции 2 с МАС адресом В. Коммутатор принимает пакет на порт №1 и анализирует адрес получателя. На основе таблицы он идентифицирует адрес B с портом №2, куда и посылает пакет. Основные достоинства такого виртуального соединения:
− дуплексный режим работы (full duplex);
− создается только на время передачи пакета;
− все другие порты коммутатора пакет не получают, что исключает коллизии;
− возможно одновременное попарное соединение различных портов коммутатора, что увеличивает пропускную способность узла.
Поскольку коммутатор анализирует управляющую информацию пакета, то он должен содержать буферные устройства памяти для каждого порта, чтобы записать весь пакет или его часть. В связи с этим различают следующие режимы коммутации:
− коммутация “напролет” (Cut Through). Здесь считывается только адрес назначения и сразу начинается передача на выходной порт. Такие коммутаторы обладают высоким быстродействием (задержка 150 битовых интервалов) и простотой реализации, но допускают передачу ошибочных пакетов;
− коммутация с полной буферизацией (Store and Forward). Здесь записываются даже самые длинные пакеты целиком. В таком режиме нет перегрузок за счет большого объема памяти, но вследствие этого же задержка достигает 12000 битовых интервалов.
Если сравнивать цифровые коммутаторы каналов с коммутаторами Ethernet, то основные отличия у них заключаются в следующем:
− коммутаторы каналов имеют небольшие ячейки памяти (8 бит), в то время как объем памяти в коммутаторах Ethernet достигает 1500 байт;
− соединение в коммутаторах каналов происходит на основании сигналов управления и взаимодействия (СУВ), передаваемых либо отдельно (ОКС №7), либо в самом цифровом потоке (КИ 16 в ИКМ - 30). Соединение в Ethernet происходит в соответствии с таблицами коммутатора и МАС – адресами;
− число входных портов в КК достигает десятков тысяч, в то время как для КП это десятки единиц (16 – 32 – 64). Поэтому сети с коммутируемым Ethernet – это локальные сети предприятий с числом станций от десятков до 4 - 8 тысяч.
Основные недостатки сетей на коммутаторах Ethernet:
Сетевые карты станций даже в пределах одного подразделения имеют, как правило, случайные МАС – адреса, поскольку приобретались в разное время, а может быть и у разных производителей. Выстроить какую-либо иерархическую структуру адресации практически невозможно. Поэтому для больших сетей таблицы коммутации становятся очень громоздкими.
Если сеть, построенная на коммутаторах Ethernet, имеет “петли” (рисунок 6.25), то информация может циклически циркулировать по ним, создавая перегрузку.
Рисунок 6.25 - Сеть на коммутаторах с петлями
Коммутаторы передают широковещательные пакеты по всем направлениям, что также создает перегрузку сети и так называемые “широковещательные штормы”.
