
- •Лабораторный практикум на новом оборудовании по учебной дисциплине электротехника
- •Краткое описание практикума
- •Лабораторная работа № 1. Изучение устройства и назначения лабораторного оборудования, электрические измерения.
- •Блок генераторов напряжений
- •Наборная панель
- •Набор миниблоков по теории электрических цепей и основам электроники
- •Набор трансформаторов
- •Набор миниблоков по теории электромагнитного поля
- •Набор планшетов для моделирования электрических и магнитных полей
- •Набор устройств для моделирования поверхностного эффекта и эффекта близости
- •Блок мультиметров
- •Ваттметр
- •Лабораторная работа №2 исследование электрической цепи постоянного тока
- •Краткая теория
- •Экспериментальная часть
- •Порядок выполнения эксперимента
- •Закон Ома Общие сведения
- •Порядок выполнения эксперимента
- •Порядок работы с виртуальными измерительными приборами
- •Лабораторная работа №3 Исследование последовательной цепи переменного тока
- •Краткая теория
- •Реактивное сопротивление конденсатора
- •Напряжение и ток катушки индуктивности
- •Реактивное сопротивление катушки индуктивности
- •Последовательное соединение конденсатора и катушки индуктивности. Понятие о резонансе напряжений
- •Экспериментальная часть
- •Порядок выполнения эксперимента
- •Порядок проведения эксперимента
- •Порядок выполнения эксперимента
- •Порядок выполнения эксперимента
- •Понятие о резонансе напряжений
- •Порядок выполнения работы
- •Лабораторная работа № 4 Трехфазные цепи переменного тока
- •Краткая теория
- •В схеме «треугольник» линейные напряжения равны соответствующим фазным.
- •Трехфазная нагрузка, соединенная по схеме «звезда»
- •Трехфазные нагрузки, соединенные по схеме «треугольник»
- •Экспериментальная часть
- •Измерение фазных кривых трехфазного источника переменного тока
- •Порядок выполнения эксперимента
- •Измерение параметров трехфазной цепи при соединении на «звезду»
- •Порядок выполнения эксперимента
- •Задание 3 Измерение параметров трехфазной цепи при соединении на «треугольник»
- •Порядок выполнения эксперимента
- •Лабораторная работа № 5 Аварийные режимы трёхфазной цепи при соединении нагрузки на звезду и на треугольник
- •Краткая теория Обрыв нейтрального провода при несимметричной нагрузке
- •Обрыв фазы при симметричной нагрузке в схеме с нулевым проводом
- •Обрыв фазы при симметричной нагрузке в схеме без нулевого провода
- •Короткие замыкания
- •Аварийные режимы трёхфазной цепи при соединении нагрузки в треугольник
- •Экспериментальная часть Задание 1
- •Порядок выполнения работы
- •Задание 2
- •Порядок выполнения работы
- •А) Обрыв фазы ав нагрузки б) Обрыв линейного провода а в) Обрыв фазы ав и линии с г) Обрыв фазы ав и линии а
- •4. В каком режиме будет работать схема при обрыве фазы при симметричной нагрузке без нулевого провода?
- •Лабораторная работа № 6 однофазный трансформатор устройство и принцип действия
- •Краткая теория
- •Принцип действия трансформаторов
- •Рабочий режим работы трансформатора
- •Потери в трансформаторе.
- •Коэффициент полезного действия трансформатора
- •Коэффициент трансформации
- •Коэффициент магнитной связи
- •Процессы включения и отключения цепи с катушкой индуктивности
- •Экспериментальная часть Задание 1
- •Порядок выполнения эксперимента
- •Коэффициент трансформации
- •Порядок выполнения эксперимента
- •Внешняя характеристика и кпд трансформатора
- •Порядок выполнения работы
- •Процессы включения и отключения цепи с катушкой индуктивности
- •Экспериментальная часть
- •Лабораторная работа №7 Моделирование плоскопараллельных электростатических и магнитных полей током в проводящем листе
- •Краткая теория
- •Моделирование плоскопараллельного магнитного поля Задание 2
- •Порядок выполнения работы
- •Изучение диодов, и схем выпрямления однофазного и трехфазного переменного тока Источники питания
- •Полупроводниковый однополупериодный выпрямитель
- •Однополупериодная схема
- •Полупроводниковый мостовой выпрямитель
- •Сглаживающие фильтры
- •Экспериментальная часть
- •Порядок выполнения эксперимента
- •Порядок выполнения эксперимента
- •Задание 3
- •Порядок выполнения эксперимента
- •Неуправляемый выпрямитель трехфазного тока
- •Задание 4
- •Порядок выполнения эксперимента
- •Контрольные вопросы:
- •Лабораторная работа № 9. Испытание трехфазного асинхронного двигателя с короткозамкнутым ротором
- •Краткая теория Принцип работы и устройство трёхфазной асинхронной машины
- •Экспериментальная часть
- •Задание 1
- •Пуск в ход трехфазного асинхронного двигателя с короткозамкнутым ротором с регистрацией и отображением режимных параметров на компьютере
- •Описание электрических схем соединений
- •Указания по проведению эксперимента
- •Задание 2
- •Описание электрической схемы соединений
- •Указания по проведению эксперимента
- •Задание 3
- •Описание электрической схемы соединений
- •Указания по проведению эксперимента
- •Заданием 4
- •Перечень аппаратуры
- •Описание электрической схемы соединений
- •Указания по проведению эксперимента
- •Контрольные вопросы:
- •Лабораторная работа № 10 Испытание генератора постоянного тока Цель работы: Испытание генератора постоянного тока при различных способах возбуждения.
- •Краткая теория
- •Способы возбуждения генераторов постоянного тока
- •Генератор с независимым возбуждением
- •Генератор с параллельным возбуждением
- •Генератор с последовательным возбуждением
- •Генератор со смешанным возбуждением
- •Возбуждение / самовозбуждение генератора постоянного тока с регистрацией и отображением режимных параметров на компьютере
- •Указания по проведению эксперимента
- •Задание 2
- •Описание электрической схемы соединений
- •Указания по проведению эксперимента
- •Задание 3
- •Описание электрической схемы соединений
- •Указания по проведению эксперимента
- •Лабораторная работа №11
- •Разомкнутый электропривод «Преобразователь частоты - асинхронный двигатель с короткозамкнутым ротором»
- •Краткая теория Принцип работы и устройство трёхфазной асинхронной машины
- •Совместная работа асинхронного двигателя с нагрузкой на валу
- •Пуск в ход асинхронного двигателя Прямое включение в сеть
- •Пуск при пониженном напряжении
- •Реостатный пуск асинхронных двигателей
- •Использование двигателей с улучшенными пусковыми свойствами
- •Регулирование частоты вращения асинхронных двигателей
- •Изменение скольжения
- •Изменение числа пар полюсов
- •Изменение частоты источника питания
- •Коэффициент мощности асинхронного двигателя и его зависимость от нагрузки на валу
- •Экспериментальная часть Здание 1
- •Описание электрической схемы соединений
- •Указания по проведению экспериментов
- •Измерение координат электропривода в статическом режиме
- •Определение статической механической характеристики двигателя
- •Регулирование скорости вращения двигателя согласованным изменением частоты и величины напряжения статора
- •Определение координат и параметров электропривода в переходном режиме
- •Контрольные вопросы:
- •Рекомендации по использованию программы «Регистратор режимных параметров частотного привода»
- •Лабораторная работа № 12 Действие электрического тока на человека в жилых и учебных помещениях
- •Краткая теория
- •1) Заземленная нейтраль
- •3) Компенсированная нейтраль
- •4)Защитное заземление
- •5)Защитное зануление. Принцип действия
- •Экспериментальная часть Задание 1 Определение силы электрического тока через тело человека при прямом прикосновении его к частям, находящимся под напряжением
- •Задание 2 Определение силы электрического тока через тело человека при косвенном прикосновении его к частям, находящимся под напряжением
- •Задание 3 Действие защитного зануления
- •Задание 4 Защитное действие устройства автоматического отключения питания при сверхтоках
- •Задание 5 Защитное действие двойной изоляции электроприемника
- •Задание 6 Действие устройства защитного отключения
- •Контрольные вопросы:
- •Лабораторная работа № 13 изучение двигателей постоянного тока
- •Краткая теория
- •Электромашинные усилители
- •Одноякорные преобразователи
- •Тахогенераторы постоянного тока
- •Экспериментальная часть
- •Задание 1
- •Пуск в ход двигателя постоянного тока с независимым / параллельным / последовательным возбуждением с регистрацией и отображением режимных параметров на компьютере
- •Описание электрических схем соединений
- •Электрическая схема соединений (продолжение)
- •Указания по проведению эксперимента
- •Задание 2
- •Описание электрических схем соединений
- •Указания по проведению эксперимента
- •Литература
Принцип действия трансформаторов
Простейший трансформатор состоит из магнитопровода и двух расположенных на нем обмоток. Обмотки электрически не связаны друг с другом. Одна из обмоток - первичная, подключена к источнику переменного тока. К другой обмотке - вторичной подключают потребитель.
Рис. 6.1. Принципиальная схема трансформатора
Холостой режим работы трансформатора
Режим работы трансформатора, при котором его вторичная обмотка разомкнута, называют режимом холостого хода (трансформатор работает без нагрузки).
Преобразование электрической энергии в трансформаторе сопровождается потерями. В отличие от электрических машин, трансформатор не имеет движущихся частей, поэтому механические потери при работе отсутствуют. Имеющиеся потери обусловлены явлением гистерезиса, токами Фуко, потоками рассеяния магнитного поля и активным сопротивлением обмоток.
Как известно, в ферромагнетике, подвергаемом циклическому перемагничиванию, магнитный поток связан с током зависимостью, выражаемой петлей гистерезиса. В результате ток в катушке оказывается несинусоидальным и сдвинутым по фазе относительно потока на некоторый небольшой угол потерь (5-7°). Этот ток можно представить в виде суммы двух токов — намагничивающего тока (реактивного) и тока гистерезиса (активного). Появление тока гистерезиса следует из физической сущности данного явления: на перемагничивание сердечника затрачивается энергия, пропорциональная площади петли гистерезиса. Она идет на нагревание сердечника. Для уменьшения потерь на гистерезис сердечники трансформаторов изготавливают из специальной трансформаторной стали.
Вихревые токи, или токи Фуко, возникающие в проводниках, находящихся в переменных магнитных полях, создаются и в сердечнике трансформатора. Замыкаясь в толще сердечника, эти токи нагревают его и приводят к потерям энергии. Поскольку вихревые токи возникают в плоскостях, перпендикулярных магнитному потоку, то для их уменьшения сердечники трансформаторов набирают из отдельных изолированных друг от друга стальных пластин.
Потоки рассеяния в сердечнике трансформатора создаются той частью магнитного потока, которая замыкается не через магнитопровод, а через воздух в непосредственной близости от витков. Потоки рассеяния составляют около одного процента от основного магнитного потока трансформатора.
Активное сопротивление обмоток создает потери за счет активных токов, нагревающих обмотки. Для их уменьшения обмотки трансформаторов выполняют, как правило, из меди.
Рабочий режим работы трансформатора
Режим работы трансформатора, при котором во вторичную обмотку включена нагрузка, называют рабочим.
Рис. 6.2
В режиме холостого хода основной магнитный поток в сердечнике Ф0 создает в первичной обмотке ЭДС самоиндукции, которая уравновешивает большую часть приложенного напряжения. Так будет до тех пор, пока вторичная обмотка разомкнута. Если во вторичную обмотку включить нагрузку, то в ней появится ток 12, возбуждающий в том же сердечнике свой магнитный поток Ф3, знак которого, в соответствии с правилом Ленца, противоположен знаку магнитного потока Ф, создаваемому первичной обмоткой (рис. 6.7). В результате суммарный магнитный поток в сердечнике уменьшится, а это приведет к уменьшению ЭДС Е1 в первичной обмотке. Вследствие этого часть приложенного напряжения U1 окажется неуравновешенной, что приведет к увеличению тока в первичной обмотке. Очевидно, что ток в первичной обмотке будет возрастать до тех пор, пока не прекратится размагничивающее действие тока нагрузки. После этого суммарный магнитный поток восстановится приблизительно до прежнего значения Ф0 .
При увеличении сопротивления вторичной обмотки уменьшаются ток 12 и магнитный поток Ф2 , что приводит к возрастанию суммарного магнитного потока и, следовательно, к возрастанию Ег В результате нарушится равновесие между приложенным напряжением Uj и ЭДС Е}: их разность уменьшится, а следовательно уменьшится и ток / до такого значения, при котором суммарный магнитный поток вернется к прежнему значению.
Таким образом, магнитный поток в трансформаторе остается практически постоянным как в режиме холостого хода, так и режиме переменной нагрузки. Это свойство трансформатора называют способностью саморегулирования, то есть способностью автоматически регулировать значение первичного тока I1 при изменении тока нагрузки I2.