Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
tehnologiya_izvlecheniya_znanii_iz_neironnyh_se...doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
986.62 Кб
Скачать

1.2.2.3. Статистические методы извлечения знаний из таблицы данных

Рассмотрим статистические методы извлечения знаний из таблиц данных. Естественно, объем имеющейся выборки будет определять надежность статистического вывода – т.е. подтверждения или отклонения гипотезы или доверия к полученным параметрам модели. При этом неотрицательный результат статистической проверки гипотезы не означает, что высказанное предположение является наилучшим, единственно подходящим: просто оно не противоречит имеющимся выборочным данным, однако таким же свойством могут наряду с этой гипотезой обладать и другие гипотезы [9].

Кратко перечислим существующие на данный момент методы:

  1. Проверка гипотезы об аномальном измерении.

  2. Проверка гипотез о выборочных значениях характеристик случайной величины.

  3. Проверка гипотезы о распределении случайной величины и нахождение параметров этого распределения.

  4. Корреляционный анализ.

  5. Линейный регрессионный и авторегрессионный анализ.

  6. Факторный анализ и анализ главных компонент.

  7. Байесовские классификаторы в задаче бинарной классификации.

  8. Построение линейных и кусочно-линейных разделяющих поверхностей в задаче бинарной классификации.

  9. Автоматическая группировка объектов – методы автоматической классификации (кластеризации).

1.2.3. Методы идентификации систем

Под идентификацией понимается построение модели, с заданной точностью описывающей реакцию наблюдаемого объекта на внешнее воздействие (описываемое набором входных, независимых переменных).

Задаче идентификации посвящено огромное количество работ (см., например, библиографию в [13]), отличающихся не только типами объектов, которые необходимо идентифицировать, но и самими методами и алгоритмами идентификации. Среди алгоритмов идентификации чаще всего используются рекуррентные алгоритмы, позволяющие осуществлять идентификацию в режиме нормальной работы объекта. Иными словами, для рекуррентных алгоритмов не формируется обучающая выборка (таблица данных), а адаптация модели ведется с использованием только текущей пары "вход объекта – выход объекта". Однако нет никаких ограничений на использование рекуррентных алгоритмов для обработки таблицы ранее собранных данных об объекте.

Принципы формирования алгоритмов идентификации тесно связаны с выбором уравнения, использующего наблюдаемые данные и аппроксимирующего уравнение объекта, выбором критерия качества аппроксимации (функции потерь), выбором метода оптимизации критерия. Этот выбор до последнего времени был в значительной мере произволен и обусловил господство линейной аппроксимации уравнения объекта и квадратичного критерия (при этом задача идентификации сводилась к решению системы линейных уравнений). Но практика показала, что такой выбор не всегда приводит к положительным результатам.

В настоящее время разработана информационная теория идентификации [13], позволяющая оптимально выбирать уравнение аппроксимации, критерий, и алгоритм идентификации в зависимости от точки приложения к объекту помех, наличия той или иной информации о плотности распределения помех и параметров этого распределения, используемой целевой функции, априорной информации об искомом решении. Показана возможность улучшения алгоритмов за счет управления входными воздействиями.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]