Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конструкции реакторов.doc
Скачиваний:
24
Добавлен:
01.05.2025
Размер:
6.72 Mб
Скачать

Часть 1. Конструкция реакторов типа рбмк Основные принципы физического проектирования

Концепция развития канальных уран-графитовых реакторов, охлаждаемых кипящей водой, основывалась на конструкторских решениях, проверенных практикой эксплуатации промышленных реакторов, и предполагала реализацию особенностей физики РБМК, которые в совокупности должны были обеспечить создание безопасных энергоблоков большой единичной мощности с высоким коэффициентом использования установленной мощности и экономичным топливным циклом.

В числе аргументов в пользу РБМК выдвигались преимущества, обусловленные лучшими физическими характеристиками активной зоны, в первую очередь лучший баланс нейтронов, обусловленный слабым поглощением графита, и возможность достичь глубокого выгорания урана благодаря непрерывным перегрузкам топлива. Расход природного урана на единицу выработанной энергии, в то время считавшийся одним из главных критериев экономичности, оказывался примерно на 25 % ниже, чем в ВВЭР.

От первоначального представления, что физические проблемы РБМК не требуют существенной корректировки развитых методов физических исследований промышленных реакторов, а связаны лишь с использованием в качестве основного конструкционного материала активной зоны циркония вместо алюминия, почти сразу пришлось отказаться. Уже первые оценки нейтронно-физических (и теплофизических) характеристик показали необходимость решения большого круга задач по оптимизации физических параметров реактора и разработки методического и программного обеспечения:

Основными проблемами при определении оптимальных физических характеристик РБМК являются проблемы безопасности и экономичности топливного цикла. Ядерная безопасность реактора обеспечивается возможностями контроля и управления реактивностью во всех режимах эксплуатации, что требует определения безопасных диапазонов изменения эффектов и коэффициентов реактивности. Особенно важны физические характеристики, которые обусловливают пассивную безопасность реакторной установки, как в условиях нормальной эксплуатации, так и в аварийных и переходных режимах. Не менее важные характеристики, обеспечивающие ядерную безопасность – это эффективность и быстродействие рабочих органов СУЗ, которые обеспечивают заглушение и удержание его в подкритическом состоянии.

Технико-экономические показатели работы реакторной установки также в значительной мере определяются такими физическими характеристиками, как выгорание и нуклидный состав выгружаемого топлива, удельные расходы природного и обогащенного урана и ТВС на единицу выработанной электроэнергии и компоненты баланса нейтронов в активной зоне.

Основные принципы и критерии обеспечения безопасности

Основным принципом обеспечения безопасности, положенным в основу проекта реакторной установки РБМК-1000, является не превышение установленных доз по внутреннему и внешнему облучению обслуживающего персонала и населения, а также нормативов по содержанию радиоактивных продуктов в окружающей среде при нормальной эксплуатации и рассматриваемых в проекте авариях.

Комплекс технических средств обеспечения безопасности реакторной установки РБМК-1000 осуществляет выполнение функций:

  • надежного контроля и управления энергораспределением по объему активной зоны;

  • диагностики состояния активной зоны для своевременной замены потерявших работоспособность конструктивных элементов;

  • автоматического снижения мощности и останова реактора в аварийных ситуациях;

  • надежного охлаждения активной зоны при выходе из строя различного оборудования;

  • аварийного охлаждения активной зоны при разрывах трубопроводов циркуляционного контура, паропроводов и питательных трубопроводов.

  • обеспечения сохранности конструкций реактора при любых исходных событиях;

  • оснащения реактора защитными, локализующими, управляющими системами безопасности и отвода выбросов теплоносителя при разгерметизации трубопроводов из реакторных помещений в систему локализации;

  • обеспечения ремонтнопригодности оборудования в процессе эксплуатации реакторной установки и при ликвидации последствий проектных аварий.

В процессе проектирования первых реакторных установок РБМК-1000 был сформирован перечень исходных аварийных событий и проанализированы наиболее неблагоприятные пути их развития. На основе опыта эксплуатации РУ на энергоблоках Ленинградской, Курской и Чернобыльской АЭС и по мере ужесточения требований к безопасности АЭС, которое имеет место в мировой энергетике вообще, первоначальный перечень исходных событий значительно расширен.

Перечень исходных событий применительно к реакторным установкам РБМК-1000 последних модификаций включает более 30 аварийных ситуаций, которые могут быть разделены на 4 основных принципа:

  • ситуации с изменением реактивности;

  • аварии в системе охлаждения активной зоны;

  • аварии, вызванные разрывом трубопроводов;

  • ситуации с отключением или отказом оборудования.

В проект реакторной установки РБМК-1000 при анализе аварийных ситуаций и разработке средств обеспечения безопасности заложены в соответствии с ОПБ-82 следующие критерии безопасности:

1. в качестве максимальной проектной аварии рассматривается разрыв трубопровода максимального диаметра с беспрепятственным двухсторонним истечением теплоносителя при работе реактора на номинальной мощности;

2. первый проектный предел повреждения твэлов для условий нормальной эксплуатации составляет: 1% твэлов с дефектами типа газовой неплотности и 0,1% твэлов с прямым контактом теплоносителя и топлива;

3. второй проектный предел повреждения твэлов при разрывах трубопроводов циркуляционного контура и включении системы аварийного охлаждения устанавливает:

  • температуру оболочек твэлов  не более 1200 °С;

  • локальную глубину окисления оболочек твэлов  не более 18 % первоначальной толщины стенки;

  • долю прореагировавшего циркония  не более 1 % массы оболочек твэлов каналов одного раздаточного коллектора;

4. должна быть обеспечена возможность выгрузки активной зоны и извлекаемость технологического канала из реактора после МПА.