
- •Конструкция реактора, систем и оборудования реакторной установки
- •Часть 1. Конструкция реакторов типа рбмк 6
- •Часть 2. Конструкция реактора ввэр-1000 48
- •Перечень сокращений
- •Часть 1. Конструкция реакторов типа рбмк Основные принципы физического проектирования
- •Основные принципы и критерии обеспечения безопасности
- •Общее описание конструкции реактора
- •Основные технические характеристики реактора
- •Металлоконструкции реактора рбмк-1000
- •Металлоконструкция схемы «с»
- •Металлоконструкция схемы «ор»
- •Металлоконструкции схем «л» и «д»
- •Металлоконструкция схемы «кж»
- •Металлоконструкция схемы «е»
- •Металлоконструкция схемы «г»
- •Плитный настил
- •Металлоконструкция схемы «э»
- •Состав и устройство активной зоны реактора
- •Конструкция твс и технологического канала
- •Тепловыделяющий элемент
- •Основные характеристики тепловыделяющих элементов
- •Система управления и защиты в реакторе рбмк-1000 Общие сведения
- •Стержни суз
- •Стержни рр (ар, лаз, лар)
- •Стержни быстрой аварийной защиты (баз)
- •Укороченные стержни поглотители усп
- •По высоте активной зоны реакторов рбмк Эффективность стержней суз
- •Средняя эффективность стержней рр в различных состояниях реактора
- •Структурная схема управления реактором рбмк
- •Технологические системы, обслуживающие работу рбмк Контур многократной принудительной циркуляции кмпц
- •Краткое описание насоса цвн-7
- •Описание сепаратора
- •Контур охлаждения каналов суз
- •Газовый контур реактора
- •Система охлаждения бассейнов выдержки
- •Контур охлаждения воды в отсеках схемы «л»
- •Промежуточный контур
- •Часть 2. Конструкция реактора ввэр-1000 Назначение и состав первого контура ввэр-1000
- •Технические характеристики реакторной установки
- •Компоновка оборудования 1 контура ру в-320
- •Реактор ввэр-1000. Общие сведения
- •Конструкция реактора ввэр-1000
- •Корпус реактора
- •Шахта внутрикорпусная
- •Выгородка
- •Блок защитных труб
- •Верхний блок с крышкой
- •Оборудование бетонной шахты
- •Принцип действия реакторной установки
- •Назначение, состав и устройство комплекса кассет и его составных частей
- •Список рекомендованной литературы
Технологические системы, обслуживающие работу рбмк Контур многократной принудительной циркуляции кмпц
КМПЦ реактора предназначен для обеспечения непрерывной циркуляции теплоносителя , отводящего тепло, выделяющееся в активной зоне реактора.
КМПЦ состоит из 2-х петель МПЦ, оборудование которых, включая трубопроводы, расположено симметрично относительно- вертикальной осевой плоскости реактора, в сторону машзала. Реактор РБМК работает в блоке с двумя турбинами, которые вместе с конденсатно-питательными трактами, образуют два турбинных контура.
Состав оборудования:
№ п/п |
Наименование оборудования |
Количество |
1. |
Барабан - сепаратор |
4 |
2. |
Труба опускная |
48 |
3. |
Коллектор всасывающий |
2 |
4. |
Главный циркуляционный насос |
8 |
5. |
Коллектор нагнетательный |
2 |
6. |
Коллектор групповой |
44 |
7. |
Регенератор контура продувки |
5 |
8. |
Доохладитель |
3 |
9. |
Фильтр байпасной очистки |
4 |
10. |
Насос рахолаживания |
2 |
11. |
Питательный насос |
5 |
12. |
Деаэратор |
8 |
13. |
Регенеративный подогреватель |
12 |
14. |
Конденсатный насос II-ой ступени |
6 |
15. |
Конденсатоочистка |
2 |
16. |
Конденсатный насос I-ой ступени |
6 |
17. |
Конденсатор турбины |
8 |
18. |
Турбина |
2 |
19. |
Сепаратор промежуточный |
4 |
20. |
Пароперегреватель |
4 |
21 |
Электрогенератор |
2 |
Вода циркуляционного контура с t = 2560С и давлением 71 кгс/см2 из 2-х всасывающих коллекторов Ø 1020 * 65 (по одному с каждой стороны реактора) по трубопроводам Ø 820 * 34 поступает на всас главных циркуляционных насосов (ГЦН). Всего в каждом самостоятельном циркуляционном контуре устанавливается по 4 вертикальных циркуляционных насоса типа ЦВН-7, ЦВН-7А (по 3 рабочих и одному резервному).
На всасывающих трубопроводах ГЦН устанавливается по одной запорной задвижке Ду800 , а на нагнетательных трубопроводах ГЦН устанавливается по обратному клапану , одной дроссельной и одной запорной задвижке Ду800.
От ГЦН по трубопроводам Ду800*34 вода поступает в напорные коллекторы Ду1040*65 и затем в 22 (на одну сторону) групповых коллектора Ду325*14, откуда через запорно-регулирующие клапаны и шариковые расходомеры типа «Шторм» по индивидуальным трубопроводам НВК 57*3,5 подводится к каждому технологическому каналу реактора.
Запорно-регулирующие клапаны реактора позволяют регулировать расход воды через ТК на работающем реакторе.
В ТК вода, при работающем реакторе, превращается в пароводяную смесь со средним паросодержанием 14,5%, которая по индивидуальным пароводяным коммуникациям (ПВК Ду76*4) поступает в барабаны – сепараторы. Для выравнивания колличества пара, поступающего в сепараторы на реакторе блока №2 в 1981 году произведена переобвязка ПВК нечетных рядов ТК (17 …57 ряды). На реакторе блока №1 аналогичная переобвязка будет произведена в 1982 году.
В барабанах – сепараторах происходит разделение пароводяной смеси на пар и воду.
Отсепарированная вода, смешавшись с питательной водой, по опускным трубопроводам поступает на всас насосов ГЦН, а насыщенный пар по паропроводам поступает в цилиндры высокого давления (ЦВД) турбин.
Отработанный в ЦВД пар сепарируется в промежуточных сепараторах, перегревается острым паром и поступает в цилиндры низкого давления (ЦНД), а затем в поверхностные конденсаторы, где конденсируется при разряжении 400 мм вод.ст.
Конденсат подвергается очистке в фильтрах, подогревается в пяти регенеративных подогревателях паром, отбираемым из турбины и поступает в деаэраторы.
В деаэраторах происходит выделение растворенного в конденсате кислорода в результате перехода конденсата через линию насыщения за счет подогрева потока воды встречным потоком пара , подаваемым из отбора турбины. Пар с отделенными из конденсата газами сбрасывается в конденсаторы турбин, а питательная вода при температуре 1640С подается питательными насосами через узел регулирования в коллекторы барабанов-сепараторов, где смешивается с отсепарированной водой перед входом в опускные трубопроводы. Затем вода из всасывающего коллектора поступает на всас насосов ГЦН.
Связь паропроводов, идущих от барабанов-сепараторов, обеспечивает возможность работы всех сепараторов на одну турбину. Водные объемы барабанов-сепараторов каждой петли контура МПЦ связаны между собой перемычками.
Напорные и всасывающие коллекторы одной циркуляционной петли не имеют связи с коллекторами ГЦН другой петли, но внутри каждой петли между ними есть перемычки с арматурой, которые обеспечивают самоциркуляцию воды через реактор при остановленных ГЦН.
Полный объем циркуляционного контура одного реактора составляет 1300 м3 Паровой объем в номинальном режиме составляет 235 м3 (без парового объема сепараторов). Всего воды в первом контуре в номинальном режиме 655 т.
Для поддержания солесодержания воды в контуре в допустимых пределах предусмотрена продувка 200 т/час воды. Продувочная вода охлаждается в регенераторе и доохладителе до 550С и поступает на химводоочистку. После очистки продувочная вода возвращается в перемычки смесителей сепараторов после узлов регулирования питательной воды, предварительно нагревшись в регенераторах до 2500С.
После теплообменников системы продувки в трубопровод продувки врезается трубопровод Ø 219*7, на котором устанавливается запорная задвижка и регулятор давления «до себя», назначение которого – поддерживать давление в циркуляционном контуре на уровне 40 кгс/см2 в период разогрева контура из холодного состояния путем сброса излишков воды либо в ьак АПН, либо в буферный резервуар.
Для обеспечения работы ГЦН-ов смонтированы контур уплотнения и две системы маслохозяйства (по одной на сторону).