
- •Конструкция реактора, систем и оборудования реакторной установки
- •Часть 1. Конструкция реакторов типа рбмк 6
- •Часть 2. Конструкция реактора ввэр-1000 48
- •Перечень сокращений
- •Часть 1. Конструкция реакторов типа рбмк Основные принципы физического проектирования
- •Основные принципы и критерии обеспечения безопасности
- •Общее описание конструкции реактора
- •Основные технические характеристики реактора
- •Металлоконструкции реактора рбмк-1000
- •Металлоконструкция схемы «с»
- •Металлоконструкция схемы «ор»
- •Металлоконструкции схем «л» и «д»
- •Металлоконструкция схемы «кж»
- •Металлоконструкция схемы «е»
- •Металлоконструкция схемы «г»
- •Плитный настил
- •Металлоконструкция схемы «э»
- •Состав и устройство активной зоны реактора
- •Конструкция твс и технологического канала
- •Тепловыделяющий элемент
- •Основные характеристики тепловыделяющих элементов
- •Система управления и защиты в реакторе рбмк-1000 Общие сведения
- •Стержни суз
- •Стержни рр (ар, лаз, лар)
- •Стержни быстрой аварийной защиты (баз)
- •Укороченные стержни поглотители усп
- •По высоте активной зоны реакторов рбмк Эффективность стержней суз
- •Средняя эффективность стержней рр в различных состояниях реактора
- •Структурная схема управления реактором рбмк
- •Технологические системы, обслуживающие работу рбмк Контур многократной принудительной циркуляции кмпц
- •Краткое описание насоса цвн-7
- •Описание сепаратора
- •Контур охлаждения каналов суз
- •Газовый контур реактора
- •Система охлаждения бассейнов выдержки
- •Контур охлаждения воды в отсеках схемы «л»
- •Промежуточный контур
- •Часть 2. Конструкция реактора ввэр-1000 Назначение и состав первого контура ввэр-1000
- •Технические характеристики реакторной установки
- •Компоновка оборудования 1 контура ру в-320
- •Реактор ввэр-1000. Общие сведения
- •Конструкция реактора ввэр-1000
- •Корпус реактора
- •Шахта внутрикорпусная
- •Выгородка
- •Блок защитных труб
- •Верхний блок с крышкой
- •Оборудование бетонной шахты
- •Принцип действия реакторной установки
- •Назначение, состав и устройство комплекса кассет и его составных частей
- •Список рекомендованной литературы
По высоте активной зоны реакторов рбмк Эффективность стержней суз
С физической точки зрения стержни СУЗ характеризуются эффективностью (физическим весом), интегральной и дифференциальной характеристиками (см. табл. 1.4).
Эффективность стержня СУЗ или физический вес – это реактивность, которую стержень может скомпенсировать при введении в активную зону и соответственно высвободить при извлечении из активной зоны.
Эффективность воздействия стержня на реактивность определяется долей нейтронов, поглощенных им в активной зоне, а также дополнительной утечкой нейтронов из реактора, вызванной деформацией нейтронного поля в зависимости от формы, размеров стержня и места его расположения в активной зоне, эффект утечки может составлять 50% эффекта поглощения.
Таблица 1.4
Средняя эффективность стержней рр в различных состояниях реактора
Состояние активной зоны |
Наличие воды в КО СУЗ |
Средний вес стержня × 10-5а.е. |
Горячее на мощности |
есть |
46 |
Разогретое разотравленное, с водой в КМПЦ |
есть нет |
40 57 |
Холодное разотравленнное, с водой в КМПЦ |
есть нет |
32 49 |
Разогретое разотравленное, без воды в КМПЦ |
есть нет |
51 69 |
Холодное разотравленнное, без воды в КМПЦ |
есть нет |
45 62,5 |
Эффективность
стержня СУЗ определяется относительным
распределением нейтронного потока по
радиусу реактора и пропорциональна
величине
,
где
плотность потока нейтронов в канале со
стержнем СУЗ,
среднее значение относительного
распределения плотности потока нейтронов
по радиусу реактора.
Эффективность стержня СУЗ без воды выше, чем эффективность стержня с водой, что объясняется поглощением части нейтронов в воде, омывающей стержень.
При сливе воды из КО СУЗ стержни лишаются "водного экрана", поток тепловых нейтронов, падающих на них, увеличивается, что приводит к увеличению эффективности стержня.
Увеличение эффективности стержней СУЗ при сливе воды из КМПЦ происходит за счет увеличения длины миграции нейтронов в реакторе (уменьшается поглощение в воде).
В целом величина абсолютной эффективности стержня СУЗ зависит от размеров реактора (радиус), физических свойств активной зоны (длина миграции), размеров стержня СУЗ (радиус, длина), его поглощающих свойств и места расположения в активной зоне (относительное распределение нейтронного потока в канале со стержнем СУЗ).
Структурная схема управления реактором рбмк
Регулирование реактивности, мощности реактора осуществляется с помощью системы управления и защиты (СУЗ). Система управления и защиты реактора предназначена для оперативного контроля за ходом цепной реакции деления в активной зоне реактора и управления этим процессом в следующих режимах работы реактора:
первоначальная загрузка;
пуск реактора из подкритического состояния;
вывод реактора на мощность;
работа в энергетическом диапазоне (изменение и/или поддержание заданного уровня мощности);
регламентный или аварийный останов реактора;
остановленный реактор.
СУЗ должна исключать возможность неконтролируемого развития цепной реакции в активной зоне или распространения за установленные проектом границы радиоактивности во всех эксплуатационных режимах и аварийных ситуациях, которые определены в ОПБ-88/97, ПБЯ РУ АС-89, «Технологическом регламенте».
Назначением любой системы регулирования является автоматическое поддержание регулируемого параметра в заданных пределах. В данном случае объектом регулирования является ядерный реактор, регулируемым параметром - нейтронный поток, пропорциональный мощности реактора. Регулирующим органом является стержень, содержащий поглощающий нейтроны материалы и воздействующий на нейтронный поток реактора.
СУЗ реактора РБМК-1000 является следящей, замкнутой. Упрощенная структурная схема СУЗ представлена на рисунке 1.19.
В качестве датчиков регулируемого параметра (мощности реактора) используются нейтронные датчики, вырабатывающие сигнал, пропорциональный нейтронному потоку. Этот сигнал сравнивается с сигналом заданного уровня мощности реактора в сравнивающем устройстве измерительной части СУЗ, в котором вырабатывается сигнал ошибки между реальной и заданной мощностью. Сигнал ошибки поступает в схему управления исполнительной частью, которая формирует сигнал на перемещение регулирующих органов (стержней-поглотителей нейтронов) в активной зоне реактора таким образом, чтобы уменьшить значение ошибки регулируемой мощности.
Для передачи команд оператора по управлению стержнями в исполнительную часть, для обеспечения необходимого алгоритма работы авторегулятора, а также для формирования сигналов аварийной защиты реактора по физическим и технологическим параметрам предназначены схемы логики СУЗ, состоящие из отдельных функциональных узлов.
Рис. 1.19. Структурная схема СУЗ реактора РБМК-1000
Для обеспечения оператора информацией о состоянии оборудования СУЗ и объекта управления (реактора) в состав СУЗ введена система информационной поддержки оператора, к которой относятся:
схемы вызывной, предупредительной и аварийной сигнализации;
выносные приборы, отображающие наиболее важную информацию о состоянии реакторной установки и технологического оборудования;
схема измерения скорости счёта нейтронного потока;
система измерения и регистрации нейтронной мощности и реактивности.
Таким образом, в соответствии с вышесказанным, СУЗ можно разделить на следующие основные функциональные части:
Исполнительные механизмы СУЗ.
Схемы управления и контроля исполнительных механизмов.
Измерительная часть СУЗ.
Схемы логики СУЗ.
Схема электроснабжения СУЗ.
Система информационной поддержки оператора.