
- •Глава 1 коррозионная характеристика металлов и сплавов
- •Конструкционные материалы на основе железа
- •1.1.1 Стали и чугуны
- •1.1.2 Легирование сталей как способ повышения коррозионной стойкости
- •Жаростойкие сплавы на основе железа
- •В зависимости от содержания хрома в сплаве
- •1.1.4 Современные коррозионно-стойкие сплавы и стали
- •1.2 Конструкционные материалы на основе цветных металлов
- •1.2.1 Алюминий и его сплавы
- •1.2.2 Магний и его сплавы
- •1.2.3 Медь и медные сплавы
- •Методические рекомендации к главе 1
- •Вопросы для самопроверки
- •Задания для самостоятельных и контрольных работ.
- •Глава 2 Защита металла от коррозии поверхностными тонкослойными покрытиями
- •2.1 Фосфатные и оксидные защитные пленки
- •2.1.1 Фосфатирование
- •2.1.2 Оксидирование
- •2.1.3 Пассивирование
- •2.1.4 Анодирование
- •2.2 Гальванические покрытия
- •2.2.1 Цинкование и кадмирование
- •2.2.2 Покрытия из олова и свинца
- •2.2.3 Никелевые покрытия
- •2.2.4 Хромирование
- •2.3 Жаростойкие защитные покрытия
- •2.3.1 Термодиффузионный метод покрытия
- •2.3.2 Горячий метод или метод погружения в расплавленный металл
- •2.3.3 Металлизация напылением
- •2.3.4 Плакирование — термомеханический способ
- •2.4 Лакокрасочные защитные покрытия
- •Методические рекомендации к главе 2 Вопросы для самопроверки
- •Темы для самостоятельных и контрольных работ
- •Глава 3 локальные виды коррозии. Методы испытания материалов на стойкость против коррозии
- •3.1 Локальные виды коррозии
- •3.1.1 Питтинговая коррозия
- •3.1.2 Язвенная коррозия
- •3.1.3 Щелевая коррозия и влияние на конструктивных факторов
- •3.1.4 Межкристаллитная коррозия
- •3.1.5 Селективное вытравливание
- •3.1.6 Контактная коррозия
- •Коррозионно-механическое разрушение металлов
- •3.2.1 Коррозионное растрескивание металлов
- •Температура 320˚с, х900
- •3.2.2 Коррозионная усталость металла
- •Трубке из латуни л63
- •3.2.3 Фреттинг-коррозия
- •3.2.4 Кавитационная эрозия
- •Методы испытаний металлических материалов
- •3.3.1 Основные методы испытаний материалов
- •3.3.2 Испытания материалов на прочность против локальных видов коррозии
- •3.3.3 Испытания материалов на прочность при коррозионно-механических воздействиях
- •3.3.4 Коррозионный мониторинг
- •Методические рекомендации к главе 3 Вопросы для самопроверки
- •Задания для самостоятельных и контрольных работ
3.1.2 Язвенная коррозия
Язвенная коррозия, как правило, протекает на поверхности активно растворяющихся металлов (в некоторых случаях коррозионные язвы могут образовываться и при слиянии питтингов, растущих на пассивном металле) и по характеру своего развития напоминает питтинговую коррозию, вследствие чего четкая квалификация локального коррозионного процесса часто бывает затруднена. Склонностью к язвенной коррозии обладают углеродистые и низколегированные стали, эксплуатирующиеся в водных хлоридсодержащих средах, например, водоводы, водопроводы, теплоэнергетическое оборудование.
Стойкость углеродистых и низколегированных сталей против язвенной коррозии в значительной степени зависит от их структурных и структурно-фазовых составляющих. Резкое снижение стойкости сталей против язвенной коррозии происходит при выделении в их структуре сульфидных неметаллических включений на основе кальция. Существенно меньшую и имеющую практическое значение только для углеродистых сталей опасность представляют включения сульфида марганца. Для сталей с феррито-перлитной структурой склонность к язвенной коррозии возрастает при образовании непрерывной сетки тонкодисперсных перлитных выделений.
Механизм действия сульфидов на основе кальция подобен описанному ранее для питтинговой коррозии нержавеющих сталей. Их более высокая, по сравнению с сульфидами марганца, коррозионная опасность объясняется более высокой скоростью растворения в электролитах [28].
Механизм действия перлитных фаз следующий. Перлит имеет слоистую пластинчатую структуру с соотношением толщин ферритной и цементитной пластинчатых фаз (7-8): 1. Толщина пластин в зависимости от условий термической обработки может меняться примерно в 10 раз, в частности для феррита — от 0,1 до 1,0 мкм, причем, чем тоньше пластины, тем более они искривлены. В нейтральных средах феррит растворяется на 1-2 порядка величины быстрее, чем цементит. С усилением кислотности раствора скорость растворения феррита возрастает еще на несколько порядков величины, а скорость растворения цементита если и изменяется, то не более чем в 10 раз.
При коррозии в нейтральном растворе локальная среда в микрозазоре, оставленном растворяющейся ферритной пластиной подкисляется, скорость растворения феррита еще более возрастает. Чем тоньше пластины в перлитовой колонии, тем быстpee закисляется среда в первых образовавшихся зазорах и тем выше скорость и, дальнейшего растворения ферритных пластин. Скорость же растворения феррита матрицы металла при этом будет оставаться неизменной. Потерявшие связь с металлом цементитные пластины выкрашиваются, образуя коррозионные язвы. Рассмотренный механизм имеет общие черты с питтинговой и щелевой коррозией, поскольку локальное подкисление раствора стимулирует коррозионный процесс. Видна общность с МКК, поскольку в обоих процессах происходит вытравление потерявшей связь с металлической матрицей карбидной фазы.
3.1.3 Щелевая коррозия и влияние на конструктивных факторов
Щелевая коррозия возникает в тех случаях, если конструкция содержит узкие щели, зазоры, застойные места или если металлический материал обладает технологическими дефектами типа микрощелей или микротрещин (рисунок 3.2). Часто началом щелевой коррозии является развитие в указанных дефектах коррозионных питтингов. Интенсификации щелевой коррозии способствует изменение свойств раствора в щелях и зазорах — с течением времени он подкисляется, становится более концентрированным по агрессивным анионам.
П — изолирующее покрытие; Г — газовый пузырек; О — узкое отверстие; В — резьбовое соединение с шайбами, фланцами, прокладками; М — граница соприкосновения раствора с металлическим изделием
Рисунок 3.2 - Благоприятные места для развития щелевой коррозии (показаны стрелками).
Если коррозионный процесс на основной поверхности изделия протекает с кислородной деполяризацией, то вследствие диффузионных затруднений доставки кислорода в места щелей и зазоров раствор в них будет обеднен кислородом. Это особенно важно для случая коррозии оборудования, находящегося в пассивном состоянии, например, для коррозии оборудования химической промышленности, изготовленного из нержавеющих сталей. Снижение скорости катодной реакции вследствие уменьшения концентрации кислорода в растворе может привести к переводу металла в активное состояние, то есть к резкому (на несколько порядков величины) возрастанию скорости его растворения [29].
Склонность к щелевой коррозии снижается с увеличением степени легированности сталей, однако, как и в случае питтинговой коррозии, стали одного марочного состава могут обладать резко различной стойкостью против рассматриваемого вида локальной коррозии. Наиболее стойкими материалами являются суперсплавы, содержащие повышенные количества хрома, никеля и молибдена, а также сплавы на основе никеля.