
- •Глава 1 коррозионная характеристика металлов и сплавов
- •Конструкционные материалы на основе железа
- •1.1.1 Стали и чугуны
- •1.1.2 Легирование сталей как способ повышения коррозионной стойкости
- •Жаростойкие сплавы на основе железа
- •В зависимости от содержания хрома в сплаве
- •1.1.4 Современные коррозионно-стойкие сплавы и стали
- •1.2 Конструкционные материалы на основе цветных металлов
- •1.2.1 Алюминий и его сплавы
- •1.2.2 Магний и его сплавы
- •1.2.3 Медь и медные сплавы
- •Методические рекомендации к главе 1
- •Вопросы для самопроверки
- •Задания для самостоятельных и контрольных работ.
- •Глава 2 Защита металла от коррозии поверхностными тонкослойными покрытиями
- •2.1 Фосфатные и оксидные защитные пленки
- •2.1.1 Фосфатирование
- •2.1.2 Оксидирование
- •2.1.3 Пассивирование
- •2.1.4 Анодирование
- •2.2 Гальванические покрытия
- •2.2.1 Цинкование и кадмирование
- •2.2.2 Покрытия из олова и свинца
- •2.2.3 Никелевые покрытия
- •2.2.4 Хромирование
- •2.3 Жаростойкие защитные покрытия
- •2.3.1 Термодиффузионный метод покрытия
- •2.3.2 Горячий метод или метод погружения в расплавленный металл
- •2.3.3 Металлизация напылением
- •2.3.4 Плакирование — термомеханический способ
- •2.4 Лакокрасочные защитные покрытия
- •Методические рекомендации к главе 2 Вопросы для самопроверки
- •Темы для самостоятельных и контрольных работ
- •Глава 3 локальные виды коррозии. Методы испытания материалов на стойкость против коррозии
- •3.1 Локальные виды коррозии
- •3.1.1 Питтинговая коррозия
- •3.1.2 Язвенная коррозия
- •3.1.3 Щелевая коррозия и влияние на конструктивных факторов
- •3.1.4 Межкристаллитная коррозия
- •3.1.5 Селективное вытравливание
- •3.1.6 Контактная коррозия
- •Коррозионно-механическое разрушение металлов
- •3.2.1 Коррозионное растрескивание металлов
- •Температура 320˚с, х900
- •3.2.2 Коррозионная усталость металла
- •Трубке из латуни л63
- •3.2.3 Фреттинг-коррозия
- •3.2.4 Кавитационная эрозия
- •Методы испытаний металлических материалов
- •3.3.1 Основные методы испытаний материалов
- •3.3.2 Испытания материалов на прочность против локальных видов коррозии
- •3.3.3 Испытания материалов на прочность при коррозионно-механических воздействиях
- •3.3.4 Коррозионный мониторинг
- •Методические рекомендации к главе 3 Вопросы для самопроверки
- •Задания для самостоятельных и контрольных работ
2.2.4 Хромирование
Хромовые покрытия широко применяют для защиты от коррозии и механического износа различных машин и аппаратов.
Хромовые покрытия бывают защитно-декоративные и функциональные. Хром по отношению к стали является катодом, и при их контакте разрушаться будет сталь. Поэтому хромовые покрытия на стали должны быть сплошными и беспористыми.
Стальные изделия могут быть защищены от коррозии в атмосферных условиях однослойным хромовым покрытием толщиной не менее 40 мкм.
Для деталей из меди и медных сплавов осаждают хром по никелевому подслою. Детали из цинковых, алюминиевых, магниевых сплавов покрывают хромом после нанесения многослойного покрытия.
Основными компонентами электролитов для хромирования являются оксид хрома (VI) Cr2O3 и серная кислота. В водном растворе соединения Cr (VI) образуют смесь, состоящую из кислот Н2Cr2О7 и Н2CrО4. В растворе эти кислоты находятся в динамическом равновесии:
2Н2СгО4
Н2Сг2О7
+ Н2О
При электролизе на катоде одновременно происходит восстановление Сг+6 до Сг+3 и до металлического хрома, а также разряд ионов водорода. Выход по току хрома не превышает 15-25 %. Хромирование — очень сложный процесс. Хром выделяется на катоде только при очень высоких плотностях тока (1000-3000 А/м2). Причем для каждой температуры имеется минимум плотности тока, ниже которого хром не осаждается [17].
Изменяя режим электролиза можно получить блестящие, матовые (серые) или «молочные» осадки хрома. Блестящие осадки имеют наиболее высокую твердость, хорошее сцепление с основным металлом и наименьшую хрупкость. Матово-серые осадки отличаются высокой хрупкостью. Покрытия «молочным» хромом имеют высокую твердость, пластичность, значительно меньшую пористость и более высокую защитную способность.
Стальные детали приборов и машин, работающих в жестких условиях эксплуатации, покрывают двумя слоями хрома: нижний — молочный и верхний — блестящий. Это обеспечивает хорошую защиту от коррозии и высокую износостойкость при необходимых декоративных качествах.
Хромирование черное применяется для защитно-декоративной отделки деталей, поверхность которых наряду с коррозионной стойкостью должна иметь низкий коэффициент отражения света. По сравнению с другими покрытиями черного цвета черное хромовое покрытие отличается повышенной коррозионной стойкостью. Наносят черный хром по подслою молочного или блестящего хрома или никеля. Черные хромовые покрытия состоят на 75% из металлического хрома и на 25 % из оксидов хрома.
Традиционные процессы получения хромовых покрытий из растворов, содержащих соединения Cr (VI), экологически опасны. ПДК для Cr (VI) равно 0,02 мг/л, а для Cr (III) — 0,07 мг/л. В связи с этим отработанные гальвано стойки проходят сложную систему очистки. Первоначально соединения Cr (VI) восстанавливают до Cr (III). Если процесс восстановления проводят химическим путем, то применяют бисульфит натрия — NaHSО3. Для полного восстановления соединений Cr (VI) требуется 5-7-кратный избыток бисульфита и рН = 2÷2,5. В процессе очистки часть NaHSО3 разлагается с выделением SO2, что приводит к дополнительному загрязнению атмосферы. Заключительная стадия очистки состоит в подщелачивании раствора до рН = 8,0-8,5 и осаждении Сг(ОН)3 вместе с другими примесями в осадок.
С
целью улучшения экологической ситуации
очень привлекательно выглядит идея
получения осадков хрома их электролитов,
содержащих соединения Cr
(III). На этом пути возникают трудности,
связанные с низким рН гидратообразования
Cr(ОН)3,
инертностью аквакомплексов
,
образованием прочных внутриорбитальных
комплексов и сложной конструкцией
электролизера [17].
Разработанные электролиты на основе соединений Cr (III) не позволяли получить толстые слои. При достижении толщины в несколько микрон выделение хрома прекращается. Введение в раствор слабых лигандов, таких как муравьиная или малоновая кислоты, а также ряда добавок позволяет получать толстые осадки хрома (до 100-200 мкм). Использование новых электролитов дало возможность проводить осаждение хрома с выходами по току до 25-45 % и скоростью 0,8-1,6 мкм/мин вне зависимости от времени.
В процессе электролиза растворов, содержащих ионы Сг3+, соединения Cr (VI) оказывают вредное влияние. Это требует усложнения конструкции электролизера и разделения диафрагмой или мембраной анодного и катодного пространства, так как шестивалентные ионы хрома (Сr6+) в основном образуются в результате химического взаимодействия с озоном, выделяющимся на аноде. Применение новых оксидных материалов, имеющих высокое перенапряжение для реакции образования соединений Cr (VI), позволило резко снизить выход по току Сr6+ и избежать конструктивного усложнения электролизера.
Таким образом, открываются перспективы для промышленного освоения новых передовых технологий нанесения защитных хромовых покрытий [17].