
- •9. Энергетика электропривода
- •9.1 Общие сведения
- •9.2 Особенности энергетики вентильных электроприводов
- •9.3 Потери в установившихся режимах
- •9.3.1 Потери в двигателе постоянного тока с независимым возбуждением
- •9.3.2 Потери в асинхронном двигателе
- •9.4 Энергетика переходных режимов электропривода
- •9.4.1 Потери энергии в электроприводе с дпт нв
- •9.4.2 Энергетика переходных режимов асинхронного электропривода
- •9.5 Пути улучшения энергетических показателей переходных процессов электроприводов
- •Снижение момента инерции
- •Замена тормозных режимов более экономичными
- •Снижение синхронной скорости вращения двигателя
- •Непрерывное управление скоростью идеального холостого хода
- •9.6 Энергосбережение средствами электропривода
- •10. Выбор мощности электродвигателя
- •10.1 Постановка задачи выбора мощности электропривода
- •10.2 Нагрев и охлаждение двигателей
- •10.3 Нагрузочные диаграммы электропривода
- •10.4 Номинальные режимы электродвигателей
- •10.5 Расчет мощности двигателя при продолжительном режиме работы
- •10.5.1 Метод средних потерь
- •По нагрузочной диаграмме механизма определяется средняя мощность
- •10.5.2 Методы эквивалентирования режимов работы двигателей по нагреву
- •10.6 Выбор мощности при повторно-кратковремееном режиме работы двигателей
- •10.7 Выбор мощности при кратковременном режиме работы двигателя
- •Определение допустимой частоты включений асинхронных двигателей с короткозамкнутым ротором
9.3 Потери в установившихся режимах
Энергию, необходимую для совершения рабочим органом механизма полезной работы, электропривод в общем случае потребляет из сети. Прохождение потока энергии от сети к рабочему органу механизма сопровождается потерями энергии во всех элементах электропривода. Протекание токов в силовой цепи и в цепи возбуждения двигателя вызывает потери электрической энергии в активных сопротивлениях (потери в меди); изменения магнитного потока являются причиной потерь в магнитной цепи двигателя, обусловленных вихревыми токами и гистерезисом (потери в стали). Силы трения, а также сопротивление движению, создаваемое самовентиляцией двигателя, вызывают механические потери двигателя, а силы трения в передачах - механические потери в кинематической цепи.
Для нерегулируемого электропривода первую составляющую, пропорциональную I2, относят к переменным потерям, поскольку I º M, а момент определяется моментом сопротивления, т.е. зависит от технологического процесса. Две другие составляющие относятся условно к постоянным потерям, так как потери в магнитопроводе определяются практически неизменными амплитудой и частотой магнитной индукции, а механические потери – практически неизменной скоростью. Таким образом, для нерегулируемого электропривода в первом приближении можно считать
DР = К + I2R, (9.5)
где К – постоянные потери,
I и R – ток и сопротивление силовой цепи.
На рис.9.1 показано распределение потерь в направлении передачи энергии от источника энергии Р1 = 3UфIфcosj (или Р1 = UI для электропривода постоянного тока) к вращающейся рабочей машине Р2 = Мw. Мощность, передаваемая статором ротору через воздушный зазор, показана как электромагнитная мощность Рэм = Мw0 .
Рис. 9.1 Энергетическая диаграмма электрической машины
Нерегулируемый электропривод рекомендуется загружать (0.8÷0.9)Рн, при которой он имеет наилучшие энергетические показатели (η и cosφ). Работа с недогрузкой приводит к заметному снижению КПД, поэтому неоправданное завышение мощности двигателя оказывается неоправданным. Нежелательны также неудачно организованные циклы, когда холостой ход в рабочем цикле занимает большое место.
В регулируемом по скорости электроприводе энергетическая эффективность определяется выбранным способом в зависимости от того, изменяется или нет w0 в процессе регулирования.
К первой группе (w0 = const) относятся способы реостатного регулирования, а также регулирование асинхронного двигателя с к.з. ротором изменением напряжения при неизменной частоте.
Если принять для простоты, что Рэм » Р1 и DР2 » DР2м, то для этой группы получим: ∆P2=Mω0 – Mω=M(ω0 – ω)=P1(ω0 – ω)/ ω0=P1s. (9.6)
Получили зависимость потерь в роторной (якорной) цепи при любой нагрузке пропорциональны разности скоростей Dw= (w0 - w) (жесткости механических характеристик) или скольжению s.
При реостатном регулировании лишь часть этих потерь, пропорциональная суммарному сопротивлению роторной (якорной) цепи идет на нагрев, рассеивается внутри машины и греет ее. Другая часть, пропорциональная R2доб/(R2+R2доб) рассеивается вне машины. Именно эта часть в каскадных схемах используется полезно.
В асинхронном электроприводе с к.з. ротором при регулировании изменением напряжения или каким-либо другим способом, но при постоянной частоте вся мощность DР2 = Р1s рассеивается в двигателе, нагревая его и делая способ практически непригодным для продолжительного режима работы.
Ко второй группе w0 = var относятся способы регулирования изменением напряжения и магнитного потока в электроприводах постоянного тока изменением напряжения и магнитного потока и частотное регулирование в электроприводах переменного тока.
Способы регулирования с точки зрения потерь предпочтительны, поскольку разность скоростей Dw » const (механические характеристики параллельны), однако следует учитывать, что в устройствах, обеспечивающих w0 = var, тоже есть потери, сопоставимые при малых мощностях и небольших диапазонах регулирования.
Рассмотрим составляющие потерь в установившемся режиме в электроприводах с различными типами двигателей.