
- •Курс лекций «Геотектоника с основами геодинамики» для бакалавров по направлению «Геология»
- •Введение
- •Модуль 1. Внутреннее строение и состав Земли
- •Лекция 1. Внутренне строение и состав Земли Модель внутреннего строения Земли
- •Химическая характеристика внутренних оболочек Земли
- •Вещественный состав земной коры
- •Рекомендуемая литература
- •Тест рубежного контроля к модулю №1
- •10. Наибольший Кларк в земной коре имеет:
- •11. Мантийный резервуар типа ем соответствует:
- •Модуль 2. Тектоника литосферных плит
- •Лекция 2. Основные положения тектоники литосферных плит
- •Основные положения тектоники плит можно свети к нескольким основополагающим
- •1. Верхняя каменная часть планеты разделена на две оболочки, существенно различающиеся по реологическим свойствам: жесткую и хрупкую литосферу и подстилающую её пластичную и подвижную астеносферу.
- •Некоторые доказательства реальности механизма тектоники литосферных плит.
- •Рекомендуемая литература
- •Тест рубежного контроля к модулю №2
- •Модуль 3. Процессы на дивергентных границах
- •Лекция 3. Рифтогенез. Континентальный Рифтогенез
- •Континентальный рифтогенез Геофизические особенности зон континентального рифтогенеза
- •Структура и рельеф
- •Механизмы зарождения и развития рифтов
- •Модель активного рифтогенеза
- •Модель пассивного рифтогенеза
- •Особенности магматизма
- •Осадочные формации
- •Эволюция континентальных рифтов
- •Рекомендуемая литература
- •Лекция 4. Океанский рифтогенез
- •Строение и формирование океанической коры
- •Структура и рельеф
- •Магматизм
- •Геофизические особенности зон субдукции
- •Типизация зон субдукции
- •Особенности магматизма
- •Особенности метаморфизма
- •Режим субдукционной аккреции
- •Режим субдукционной эрозии
- •Рекомендуемая литература
- •Лекция 6. Обдукция
- •Тектонические режимы обдукции
- •Офиолиты
- •Метаморфизм
- •Рекомендуемая литература
- •Лекция 7. Коллизия
- •Строение коллизионных поясов
- •Рекомендуемая литература
- •Модуль 4. Взаимосвязь тектонических процессов. Тектоно-магматический цикл
- •Лекция 8. Основные этапы тектоно-магматического цикла
- •Рекомендуемая литература
- •Глоссарий
Химическая характеристика внутренних оболочек Земли
Валовый химический состав Земли очень близок к составу углистых хондритов – метеоритов, по составу близких первичному космическому веществу, из которого формировалась Земля и другие космические тела Солнечной системы. Согласно современных представлениям, химический состав оболочек планеты обусловлен дифференциацией первичного хондритового вещества.
Основная часть железа в процессе дифференциации сконцентрировалась в ядре. Это хорошо согласуется и с данными о плотности вещества ядра, и с наличием магнитного поля, с данными о характере дифференциации хондритового вещества, и с другими фактами. Эксперименты при сверхвысоких давлениях показали, что при давлениях достигаемых на границе ядра и мантии, плотность чистого железа близко к 11 г/см3, что выше фактической плотности этой части планеты. Следовательно, во внешнем ядре присутствует некоторое количество лёгких компонентов. В качестве наиболее вероятных компонентов рассматриваются водород или сера. Так расчёты показывают, что смесь 86% железа + 12% серы + 2% никеля соответствует плотности внешнего ядра и должна находится в расплавленном состоянии при Р-Т условиях этого участка планеты. Твёрдое внутреннее ядро, представлено никелистым железом, вероятно, в соотношении 80% Fe + 20% Ni, что отвечает составу железных метеоритов.
Для описания химического состава мантии к сегодняшнему дню предложено несколько моделей (табл. 1). Несмотря на имеющиеся между ними различия, всеми авторами принимается, что примерно на 90% мантия состоит из окислов кремния, магния и двухвалентного железа; еще 5 – 10% представлены окислами кальция, алюминия и натрия. Таким образом, на 98% мантия состоит всего из шести перечисленных окислов.
Таблица - Химический состав мантии Земли
Окислы |
Содержание, весовые % |
||
Пиролитовая модель |
Лерцолитовая модель |
Хондритовая модель |
|
SiO2 |
45,22 |
45,3 |
48,1 |
TiO2 |
0,7 |
0,2 |
0,4 |
Al2O3 |
3,5 |
3,6 |
3,8 |
FeO |
9,2 |
7,3 |
13,5 |
MnO |
0,14 |
0,1 |
0,2 |
MgO |
37,5 |
41,3 |
30,5 |
CaO |
3,1 |
1,9 |
2,4 |
Na2O |
0,6 |
0,2 |
0,9 |
К2О |
0,13 |
0,1 |
0,2 |
До глубины 410 км, согласно лерцолитовой модели, мантия состоит на 57% из оливина, на 27% из пироксенов и на 14% из граната; её плотность около 3,38 г/см3. На границе 410 км оливин переходит в шпинель, а пироксен – в гранат. Соответственно, нижняя мантия состоит из гранат-шпинелевой ассоциации: 57% шпинели + 39% граната + 4% пироксена. Превращение минералов в более плотные модификации на рубеже 410 км приводит к увеличению плотности до 3,66 г/см3, что отражается в возрастании скорости прохождения сейсмических волн через это вещество.
Следующий фазовый переход приурочен к границе 670 км. На этом уровне давление определяет разложение минералов, типичных для верхней мантии, с образованием более плотных минералов. Вследствие такой перестройки минеральных ассоциаций плотность нижней мантии у границы 670 км становится около 3,99 г/см3 и постепенно нарастает с глубиной под воздействием давления. Это фиксируется скачкообразным нарастанием скорости сейсмических волн и дальнейшим плавным нарастанием скорости границы 2900 км. На границе мантии и ядра, вероятно, происходит разложение силикатных минералов на металлическую и неметаллическую фазы.
Процесс дифференциации мантийного вещества сопровождается ростом металлического ядра планеты и выделением тепловой энергии.
Суммируя приведённые данные, необходимо отметить, что разделение мантии обусловлено перестройкой кристаллической структуры минералов без значимого изменения её химического состава. Сейсмические границы раздела приурочены к участкам фазовых превращений и связаны с изменением плотности вещества.
Раздел ядро/мантия является, как отмечено ранее, очень резким. Здесь резко изменяются скорости и характер прохождения волн, плотность, температура и другие физические параметры. Такие радикальные изменения не могут быть объяснены перестройкой кристаллической структуры минералов и, несомненно, связаны с изменением химического состава вещества.
Более подробные сведения имеются в вещественном составе земной коры, верхние горизонты которой доступны для непосредственно изучения.