
- •Частина 1
- •Комплексні числа.
- •Тригонометрична форма комплексного числа.
- •Дії з комплексними числами.
- •Показникова форма комплексного числа.
- •Розклад багаточлена на множники.
- •Лінійна алгебра. Основні визначення.
- •Основні дії над матрицями.
- •Операція множення матриць.
- •Визначники (детермінанти).
- •Елементарні перетворення матриці.
- •Мінори.
- •Алгебраїчні доповнення.
- •Обернена матриця.
- •Властивості обернених матриць.
- •Базовий мінор матриці. Ранг матриці.
- •Теорема про базовий мінор.
- •Матричний метод розв’язання систем лінійних рівнянь.
- •Метод Крамера.
- •Розв’язання довільних систем лінійних рівнянь.
- •Елементарні перетворення систем.
- •Теорема Кронекера-Капеллі.
- •Метод Гауса.
- •Елементи векторної алгебри.
- •Властивості векторів.
- •Лінійна залежність векторів.
- •Система координат.
- •Декартова система координат.
- •Лінійні операції над векторами в координатах.
- •Скалярний добуток векторів.
- •Векторний добуток векторів.
- •Властивості векторного добутку векторів:
- •Мішаний добуток векторів.
- •Властивості мішаного добутку:
- •Рівняння поверхні в просторі.
- •Загальне рівняння площини.
- •Рівняння площини, що проходить через три точки.
- •Рівняння площини по двох точках і вектору, колінеарному площині.
- •Рівняння площини за однією точкою і двома векторами, колінеарними площині.
- •Рівняння площини за точкою та вектором нормалі.
- •Рівняння площини у відрізках.
- •Рівняння площини у векторній формі.
- •Відстань від точки до площини.
- •Аналітична геометрія на площині. Рівняння лінії на площині.
- •Рівняння прямої на площині.
- •Рівняння прямої по точці й вектору нормалі.
- •Рівняння прямої, що проходить через дві точки.
- •Рівняння прямої по точці й кутовому коефіцієнту.
- •Рівняння прямої по точці й напрямному вектору.
- •Рівняння прямої у відрізках.
- •Нормальне рівняння прямої.
- •Кут між прямими на площині.
- •Рівняння прямої, що проходить через дану точку перпендикулярно до даної прямої.
- •Відстань від точки до прямої.
- •Криві другого порядку.
- •Гіпербола.
- •Парабола.
- •Системи координат.
- •Полярна система координат.
- •Аналітична геометрія в просторі. Рівняння лінії в просторі.
- •Рівняння прямої в просторі за точкою та напрямним вектором.
- •Рівняння прямої в просторі, що проходить через дві точки.
- •Загальні рівняння прямої в просторі.
- •Кут між площинами.
- •Умови паралельності й перпендикулярності
- •Умови паралельності й перпендикулярності
- •Умови паралельності й перпендикулярності прямої і площині в просторі.
- •Поверхні другого порядку.
- •Циліндричні поверхні.
- •Поверхні обертання.
- •Циліндрична й сферична системи координат.
- •Зв'язок між циліндричною та декартовою прямокутною системами координат.
- •Зв'язок сферичної системи координат з декартовою прямокутної.
- •Лінійний (векторний) простір.
- •Властивості лінійних просторів.
- •Лінійні перетворення.
- •Матриці лінійних перетворень.
- •Власні значення й власні вектори лінійного перетворення.
- •Квадратичні форми.
- •Приведення квадратичних форм до канонічного вигляду.
- •Вступ до математичного аналізу. Числова послідовність.
- •Обмежені й необмежені послідовності.
- •Монотонні послідовності.
- •Число е.
- •Зв'язок натурального й десяткового логарифмів.
- •Границя функції в точці.
- •Границя функції при прямуванні аргументу до нескінченності.
- •Основні теореми про границі.
- •Нескінченно малі функції.
- •Властивості нескінченно малих функцій:
- •Нескінченно великі функції та їх зв'язок з нескінченно малими.
- •Порівняння нескінченно малих функцій.
- •Властивості еквівалентних нескінченно малих.
- •Деякі визначні границі.
- •Неперервність функції в точці.
- •Властивості неперервних функцій.
- •Неперервність деяких елементарних функцій.
- •Точки розриву і їхня класифікація.
- •Неперервність функції на інтервалі й на відрізку.
- •Властивості функцій, неперервних на відрізку.
- •Елементи вищої алгебри. Основні поняття теорії множин.
- •Операції над множинами.
- •Відносини й функції.
- •Властивості бінарних відносин.
- •Алгебраїчні структури.
- •Дискретна математика. Елементи комбінаторики.
- •Біном Ньютона. (поліноміальна формула)
- •Елементи математичної логіки.
- •Основні еквівалентності.
- •Булеві функції.
- •Числення предикатів.
- •Скінченні графи й сітки. Основні визначення.
- •Матриці графів.
- •Досяжність і зв’язність.
- •Ейлерові й гамільтонові графи.
- •Дерева й цикли.
- •Елементи топології.
- •Метричний простір.
- •Відкриті й замкнуті множини.
- •Неперервні відображення.
- •Топологічні добутки.
- •Компактність.
Елементи вищої алгебри. Основні поняття теорії множин.
Визначення. Множиною М називається об'єднання в єдине ціле певних розрізнюваних об'єктів а, які називаються елементами множини.
а М
Множину можна описати, указавши якусь властивість, властиву всім елементам цієї множини.
Множина, що не містить елементів, називається порожньою і позначається .
Визначення. Якщо всі елементи множини А є також елементами множини В, то кажуть, що множина А включається (міститься) у множині В.
А
В
Визначення. Якщо А В, то множина А називається підмножиною множини В, а якщо при цьому А В, то множина А називається власною підмножиною множини В и позначається А В.
Для трьох множин А, В, С справедливі наступні співвідношення.
Зв'язок між включенням і рівністю множин встановлюється наступним співвідношенням:
Тут знак позначає кон’юнкцію (логічне “і”).
Операції над множинами.
Визначення. Об'єднанням множин А и В називається множина С, елементи якого належать хоча б одному із множин А и В.
Позначається
.
А
В
Геометричне зображення множин у вигляді області на площині називається діаграмою Ейлера-Вейна.
Визначення. Перетином множин А и В називається множина С, елементи якої належать кожній з множин А и В.
Позначення
.
А С В
Для множин А, В и С справедливі наступні властивості:
А А = А А = А; A B = B A; A B = B A;
(A B) C = A (B C); (A B) C = A (B C);
A (B C) = (A B) (A C); A (B C) = (A B) (A C);
A (A B) = A; A (A B) = A;
= А; A
= ;
Визначення. Різницею множин А и В називається множина, що складається з елементів множини А, що не належать множині В.
Позначається С = А \ В.
А В
Визначення. Симетричною різницею множин А и В називається множина С, елементи якого належать у точності одному із множин А або В.
Позначається А В.
А В = (A \ B) (B \ A)
A B
Визначення. СЕ називається доповненням множини А щодо множини Е, якщо А Е і CЕ = Е \ A.
A E
Для множин А, В и С справедливі наступні співвідношення:
A \ B A; A \ A = ; A \ (A \ B) = A B;
A B = B A; A B = (A B) \ (A B);
A \ (B C) = (A \ B) (A \ C); A \ (B C) = (A \ B) (A \ C);
(A B) \ C = (A \ C) (B \ C); (A B) \ C = (A \ C) (B \ C);
A \ (B \ C) = (A \ B) (A C); (A \ B) \ C = A \ (B C);
(A B) C = A (B C); A (B C) = (A B) (A C);
A CEA = E; A CEA = ; CEE = ; CE = E; CECEA = A;
CE(A B) = CEA CEB; CE(A B) = CEA CEB;
Приклад. Виходячи з визначення рівності множин і операцій над множинами, довести тотожність і перевірити її за допомогою діаграми Ейлера-Вейна.
Із записаних вище співвідношень видно, що
= A \ В
Що й було потрібно довести.
Для ілюстрації отриманого результату побудуємо діаграми Ейлера-Вейна:
А В А В
AB
Приклад. Виходячи з визначення рівності множин і операцій над множинами, довести тотожність.
A \ (B C) = (A \ B) (A \ C)
Якщо деякий елемент х А \ (В С), то це означає, що цей елемент належить множині А, але не належить множинам В и С.
Множина А \ В являє собою множину елементів множини А, що не належать множині В.
Множина А \ С являє собою множину елементів множини А, що не належать множині С.
Множина (A \ B) (A \ C) являє собою множина елементів, які належать множині А, але не належать ні множині В, ні множині С.
Таким чином, тотожність можна вважати доведеною.