
- •Частина 1
- •Комплексні числа.
- •Тригонометрична форма комплексного числа.
- •Дії з комплексними числами.
- •Показникова форма комплексного числа.
- •Розклад багаточлена на множники.
- •Лінійна алгебра. Основні визначення.
- •Основні дії над матрицями.
- •Операція множення матриць.
- •Визначники (детермінанти).
- •Елементарні перетворення матриці.
- •Мінори.
- •Алгебраїчні доповнення.
- •Обернена матриця.
- •Властивості обернених матриць.
- •Базовий мінор матриці. Ранг матриці.
- •Теорема про базовий мінор.
- •Матричний метод розв’язання систем лінійних рівнянь.
- •Метод Крамера.
- •Розв’язання довільних систем лінійних рівнянь.
- •Елементарні перетворення систем.
- •Теорема Кронекера-Капеллі.
- •Метод Гауса.
- •Елементи векторної алгебри.
- •Властивості векторів.
- •Лінійна залежність векторів.
- •Система координат.
- •Декартова система координат.
- •Лінійні операції над векторами в координатах.
- •Скалярний добуток векторів.
- •Векторний добуток векторів.
- •Властивості векторного добутку векторів:
- •Мішаний добуток векторів.
- •Властивості мішаного добутку:
- •Рівняння поверхні в просторі.
- •Загальне рівняння площини.
- •Рівняння площини, що проходить через три точки.
- •Рівняння площини по двох точках і вектору, колінеарному площині.
- •Рівняння площини за однією точкою і двома векторами, колінеарними площині.
- •Рівняння площини за точкою та вектором нормалі.
- •Рівняння площини у відрізках.
- •Рівняння площини у векторній формі.
- •Відстань від точки до площини.
- •Аналітична геометрія на площині. Рівняння лінії на площині.
- •Рівняння прямої на площині.
- •Рівняння прямої по точці й вектору нормалі.
- •Рівняння прямої, що проходить через дві точки.
- •Рівняння прямої по точці й кутовому коефіцієнту.
- •Рівняння прямої по точці й напрямному вектору.
- •Рівняння прямої у відрізках.
- •Нормальне рівняння прямої.
- •Кут між прямими на площині.
- •Рівняння прямої, що проходить через дану точку перпендикулярно до даної прямої.
- •Відстань від точки до прямої.
- •Криві другого порядку.
- •Гіпербола.
- •Парабола.
- •Системи координат.
- •Полярна система координат.
- •Аналітична геометрія в просторі. Рівняння лінії в просторі.
- •Рівняння прямої в просторі за точкою та напрямним вектором.
- •Рівняння прямої в просторі, що проходить через дві точки.
- •Загальні рівняння прямої в просторі.
- •Кут між площинами.
- •Умови паралельності й перпендикулярності
- •Умови паралельності й перпендикулярності
- •Умови паралельності й перпендикулярності прямої і площині в просторі.
- •Поверхні другого порядку.
- •Циліндричні поверхні.
- •Поверхні обертання.
- •Циліндрична й сферична системи координат.
- •Зв'язок між циліндричною та декартовою прямокутною системами координат.
- •Зв'язок сферичної системи координат з декартовою прямокутної.
- •Лінійний (векторний) простір.
- •Властивості лінійних просторів.
- •Лінійні перетворення.
- •Матриці лінійних перетворень.
- •Власні значення й власні вектори лінійного перетворення.
- •Квадратичні форми.
- •Приведення квадратичних форм до канонічного вигляду.
- •Вступ до математичного аналізу. Числова послідовність.
- •Обмежені й необмежені послідовності.
- •Монотонні послідовності.
- •Число е.
- •Зв'язок натурального й десяткового логарифмів.
- •Границя функції в точці.
- •Границя функції при прямуванні аргументу до нескінченності.
- •Основні теореми про границі.
- •Нескінченно малі функції.
- •Властивості нескінченно малих функцій:
- •Нескінченно великі функції та їх зв'язок з нескінченно малими.
- •Порівняння нескінченно малих функцій.
- •Властивості еквівалентних нескінченно малих.
- •Деякі визначні границі.
- •Неперервність функції в точці.
- •Властивості неперервних функцій.
- •Неперервність деяких елементарних функцій.
- •Точки розриву і їхня класифікація.
- •Неперервність функції на інтервалі й на відрізку.
- •Властивості функцій, неперервних на відрізку.
- •Елементи вищої алгебри. Основні поняття теорії множин.
- •Операції над множинами.
- •Відносини й функції.
- •Властивості бінарних відносин.
- •Алгебраїчні структури.
- •Дискретна математика. Елементи комбінаторики.
- •Біном Ньютона. (поліноміальна формула)
- •Елементи математичної логіки.
- •Основні еквівалентності.
- •Булеві функції.
- •Числення предикатів.
- •Скінченні графи й сітки. Основні визначення.
- •Матриці графів.
- •Досяжність і зв’язність.
- •Ейлерові й гамільтонові графи.
- •Дерева й цикли.
- •Елементи топології.
- •Метричний простір.
- •Відкриті й замкнуті множини.
- •Неперервні відображення.
- •Топологічні добутки.
- •Компактність.
Зв'язок сферичної системи координат з декартовою прямокутної.
У випадку сферичної системи координат співвідношення мають вигляд:
Лінійний (векторний) простір.
Як відомо, лінійні операції (додавання, віднімання, множення на число) визначені по-своєму для кожної множини (числа, багаточлени, направлені відрізки, матриці). Самі операції різні, але їхні властивості однакові.
Ця спільність властивостей дозволяє узагальнити поняття лінійних операцій для будь-яких множин поза залежністю від того, що це за множини (числа, матриці й т.д.).
Для того, щоб дати визначення лінійного (векторного) простору розглянемо деяку множину L дійсних елементів, для яких визначені операції додавання й множення на число.
Ці операції мають властивості:
Комутативність
+
= +
Асоціативність ( + ) +
= + ( + )
Існує такий нульовий вектор
, що + = для L
Для L існує вектор = – , такий, що + =
1 =
( ) = ()
Розподільний закон ( + ) = +
( + ) = +
Визначення: Множина L називається лінійним (векторним) простором, а його елементи називаються векторами.
Важливо не плутати поняття вектора, наведене вище з поняттям вектора як направленого відрізка на площині або в просторі. Направлені відрізки є всього лише часткою случаємо елементів лінійного (векторного) простору. Лінійний (векторний) простір – поняття ширше. Прикладами таких просторів можуть слугувати множина дійсних чисел, множина векторів на площині й у просторі, матриці й т.і.
Якщо операції додавання й множення на число визначені для дійсних елементів, то лінійний (векторний) простір є дійсним простором, якщо для комплексних елементів – комплексним простором.
Властивості лінійних просторів.
У кожному лінійному просторі існує тільки один нульовий елемент.
Для кожного елемента існує тільки один протилежний елемент.
Для кожного L вірно 0 = 0
Для кожного
і
L вірно =
Якщо = , те = 0 або =
(–1) = –
Лінійні перетворення.
Визначення: Будемо вважати, що в лінійному просторі L задане деяке лінійне перетворення А, якщо будь-якому елементу L за деяким правилом ставиться у відповідність елемент А L.
Визначення: Перетворення А називається лінійним, якщо для будь-яких векторів L і L і кожного вірно:
A( + ) = A +A
A( ) = A
Визначення: Лінійне перетворення називається тотожним, якщо воно перетворить елемент лінійного простору сам у себе.
Е =
Приклад. Чи є А лінійним
перетворенням. А
=
+
;
0.
Запишемо перетворення А для якогось елемента . А = + . Перевіримо, чи виконується правило операції додавання для цього перетворення А( + ) = + + ; A( ) + A( ) = + + + , що вірно тільки при = 0, тобто дане перетворення А нелінійне.
Визначення: Якщо в просторі L
є вектори лінійного перетворення
,
те інший вектор
є
лінійною комбінацією векторів
.
Визначення: Якщо
тільки при =
= … = = 0, то вектори
називаються
лінійно незалежними.
Визначення: Якщо в лінійному просторі L є n лінійно незалежних векторів, але будь-які n+1 векторів лінійно залежні, то простір L називається n-мірним, а сукупність лінійно незалежних векторів називається базисом лінійного простору L.
Наслідок: Будь-який вектор лінійного простору може бути представлений у вигляді лінійної комбінації векторів базису.