
- •Частина 1
- •Комплексні числа.
- •Тригонометрична форма комплексного числа.
- •Дії з комплексними числами.
- •Показникова форма комплексного числа.
- •Розклад багаточлена на множники.
- •Лінійна алгебра. Основні визначення.
- •Основні дії над матрицями.
- •Операція множення матриць.
- •Визначники (детермінанти).
- •Елементарні перетворення матриці.
- •Мінори.
- •Алгебраїчні доповнення.
- •Обернена матриця.
- •Властивості обернених матриць.
- •Базовий мінор матриці. Ранг матриці.
- •Теорема про базовий мінор.
- •Матричний метод розв’язання систем лінійних рівнянь.
- •Метод Крамера.
- •Розв’язання довільних систем лінійних рівнянь.
- •Елементарні перетворення систем.
- •Теорема Кронекера-Капеллі.
- •Метод Гауса.
- •Елементи векторної алгебри.
- •Властивості векторів.
- •Лінійна залежність векторів.
- •Система координат.
- •Декартова система координат.
- •Лінійні операції над векторами в координатах.
- •Скалярний добуток векторів.
- •Векторний добуток векторів.
- •Властивості векторного добутку векторів:
- •Мішаний добуток векторів.
- •Властивості мішаного добутку:
- •Рівняння поверхні в просторі.
- •Загальне рівняння площини.
- •Рівняння площини, що проходить через три точки.
- •Рівняння площини по двох точках і вектору, колінеарному площині.
- •Рівняння площини за однією точкою і двома векторами, колінеарними площині.
- •Рівняння площини за точкою та вектором нормалі.
- •Рівняння площини у відрізках.
- •Рівняння площини у векторній формі.
- •Відстань від точки до площини.
- •Аналітична геометрія на площині. Рівняння лінії на площині.
- •Рівняння прямої на площині.
- •Рівняння прямої по точці й вектору нормалі.
- •Рівняння прямої, що проходить через дві точки.
- •Рівняння прямої по точці й кутовому коефіцієнту.
- •Рівняння прямої по точці й напрямному вектору.
- •Рівняння прямої у відрізках.
- •Нормальне рівняння прямої.
- •Кут між прямими на площині.
- •Рівняння прямої, що проходить через дану точку перпендикулярно до даної прямої.
- •Відстань від точки до прямої.
- •Криві другого порядку.
- •Гіпербола.
- •Парабола.
- •Системи координат.
- •Полярна система координат.
- •Аналітична геометрія в просторі. Рівняння лінії в просторі.
- •Рівняння прямої в просторі за точкою та напрямним вектором.
- •Рівняння прямої в просторі, що проходить через дві точки.
- •Загальні рівняння прямої в просторі.
- •Кут між площинами.
- •Умови паралельності й перпендикулярності
- •Умови паралельності й перпендикулярності
- •Умови паралельності й перпендикулярності прямої і площині в просторі.
- •Поверхні другого порядку.
- •Циліндричні поверхні.
- •Поверхні обертання.
- •Циліндрична й сферична системи координат.
- •Зв'язок між циліндричною та декартовою прямокутною системами координат.
- •Зв'язок сферичної системи координат з декартовою прямокутної.
- •Лінійний (векторний) простір.
- •Властивості лінійних просторів.
- •Лінійні перетворення.
- •Матриці лінійних перетворень.
- •Власні значення й власні вектори лінійного перетворення.
- •Квадратичні форми.
- •Приведення квадратичних форм до канонічного вигляду.
- •Вступ до математичного аналізу. Числова послідовність.
- •Обмежені й необмежені послідовності.
- •Монотонні послідовності.
- •Число е.
- •Зв'язок натурального й десяткового логарифмів.
- •Границя функції в точці.
- •Границя функції при прямуванні аргументу до нескінченності.
- •Основні теореми про границі.
- •Нескінченно малі функції.
- •Властивості нескінченно малих функцій:
- •Нескінченно великі функції та їх зв'язок з нескінченно малими.
- •Порівняння нескінченно малих функцій.
- •Властивості еквівалентних нескінченно малих.
- •Деякі визначні границі.
- •Неперервність функції в точці.
- •Властивості неперервних функцій.
- •Неперервність деяких елементарних функцій.
- •Точки розриву і їхня класифікація.
- •Неперервність функції на інтервалі й на відрізку.
- •Властивості функцій, неперервних на відрізку.
- •Елементи вищої алгебри. Основні поняття теорії множин.
- •Операції над множинами.
- •Відносини й функції.
- •Властивості бінарних відносин.
- •Алгебраїчні структури.
- •Дискретна математика. Елементи комбінаторики.
- •Біном Ньютона. (поліноміальна формула)
- •Елементи математичної логіки.
- •Основні еквівалентності.
- •Булеві функції.
- •Числення предикатів.
- •Скінченні графи й сітки. Основні визначення.
- •Матриці графів.
- •Досяжність і зв’язність.
- •Ейлерові й гамільтонові графи.
- •Дерева й цикли.
- •Елементи топології.
- •Метричний простір.
- •Відкриті й замкнуті множини.
- •Неперервні відображення.
- •Топологічні добутки.
- •Компактність.
Системи координат.
Будь-яка точка на площині може бути однозначно визначена за допомогою різних координатних систем, вибір яких визначається різними факторами. Спосіб задання початкових умов для розв’язання якої-небудь конкретної технічної задачі може визначити вибір тієї або іншої системи координат. Для зручності проведення обчислень часто краще використати системи координат, відмінні від декартової прямокутної системи. Крім того, наочність подання остаточної відповіді найчастіше теж сильно залежить від вибору системи координат. Нижче розглянемо деякі найбільше часто використовувані системи координат.
Полярна система координат.
Визначення. Точка О називається полюсом, а промінь l – полярною віссю.
Суть задання який-небудь системи координат на площині полягає в тому, щоб кожній точці площини поставити у відповідність пару дійсних чисел, що визначають положення цієї точки на площині. У випадку полярної системи координат роль цих чисел грають відстань точки від полюса й кут між полярною віссю й радіус-вектором цієї точки. Цей кут називається полярним кутом.
М
r
r =
О
l
Можна встановити зв'язок між полярною системою координат і декартовою прямокутною системою, якщо помістити початок декартової прямокутної системи в полюс, а полярну вісь направити уздовж додатного напрямку осі Ох.
Тоді координати довільної точки у двох різних системах координат зв'язуються співвідношеннями:
;
;
Приклад. Рівняння кривої в полярній системі координат має вигляд:
.
Знайти рівняння кривої в декартовій
прямокутній системі координат, визначити
тип кривої, знайти фокуси й ексцентриситет.
Схематично побудувати криву.
Скористаємося зв'язком декартової
прямокутної й полярної системи координат:
;
Одержали канонічне рівняння еліпса. З
рівняння видно, що центр еліпса зсунутий
вздовж осі Ох на 1/2 вправо, велика
піввісь a дорівнює 3/2, менша піввісь b
дорівнює
,
половина відстані між фокусами дорівнює
.
Ексцентриситет дорівнює е = с/a
= 1/3. Фокуси F1(0; 0) і F2(1;
0).
y
F1 F2
–1 О ½ 1 2 x
–
Приклад. Рівняння кривої в полярній системі координат має вигляд:
.
Знайти рівняння кривої в декартовій
прямокутній системі координат, визначити
тип кривої, знайти фокуси й ексцентриситет.
Схематично побудувати криву.
Підставимо в задане рівняння формули, що зв'язують полярну й декартову прямокутну системи координат.
Одержали канонічне рівняння гіперболи. З рівняння видно, що гіпербола зсунута вздовж осі Ох на 5 вліво, велика піввісь а дорівнює 4, менша піввісь b дорівнює 3, звідки одержуємо c2 = a2 + b2 ; c = 5; e = c/a = 5/4.
Фокуси F1(–10; 0), F2(0; 0).
Побудуємо графік цієї гіперболи.
y
3
F1 –9 –5 –1 О F2 x
–3
Аналітична геометрія в просторі. Рівняння лінії в просторі.
Як на площині, так і в просторі, будь-яка лінія може бути визначена як сукупність точок, координати яких у деякій обраній у просторі системі координат задовольняють рівнянню:
F(x, y, z) = 0.
Це рівняння називається рівнянням лінії в просторі.
Крім того, лінія в просторі може бути визначена й інакше. Її можна розглядати як лінію перетину двох поверхонь, кожна з яких задана яким-небудь рівнянням.
Нехай F(x, y, z) = 0 і Ф(x, y, z) = 0 – рівняння поверхонь, що перетинаються по лінії L.
Тоді пари рівнянь
назвемо рівнянням лінії в просторі.