
- •Глава 2. Исследование мер по повышению бесперебойности питания ответственных потребителей. 35
- •Глава 3. Построение системы питания и защиты ответственных потребителей в сетях с переходом с системы заземления tn на систему заземления it 58
- •Глава 4. Программный комплекс и расчетно-экспериментальное исследование сетей с переходом от системы заземления tn к системе заземления it 93
- •Введение
- •Глава 1. Электроснабжение ответственных потребителей. Анализ требований к времени отключения токов повреждения в сетях 0,4 кВ в соответствии с новой нормативной базой
- •1.1 Электроснабжение ответственных потребителей
- •1.2 Выбор системы заземления нейтрали при питании ответственных потребителей
- •1.2.1 Система заземления tn
- •1.2.2 Система заземления it
- •1.2.3 Система заземления tt
- •1.2.4 Анализ систем заземления нейтрали и выбор наилучшей с точки зрения бесперебойности питания потребителя
- •1.3 Основные положения защиты от поражения электрическим током
- •1.4 Электрофизические реакции при протекании электрического тока через тело человека
- •1.5 Анализ требований к времени отключения токов повреждения в сетях 0,4 кВ в соответствии с новой нормативной базой
- •1.6 Выводы к первой главе
- •Глава 2. Исследование мер по повышению бесперебойности питания ответственных потребителей.
- •2.1 Электроснабжение ответственных потребителей от источников бесперебойного питания статического типа как мера повышения бесперебойности
- •2.1.1 Источники бесперебойного питания резервного типа (passive standby)
- •2.1.2 Источники бесперебойного питания линейно-интерактивного типа (line interactive)
- •2.1.3 Источники бесперебойного питания с двойным преобразованием (double conversion)
- •2.1.4 Структура схем электроснабжения ответственных потребителей с источниками бесперебойного питания статического типа
- •2.1.4.1 Системы с параллельным резервированием
- •2.1.4.2 Схема с последовательным резервированием
- •2.2 Использование системы заземления it в сетях питания ответственных потребителей как меры по повышению бесперебойности
- •2.2.1 Первое замыкание
- •2.2.1.1 Сеть it с изолированной и нераспределенной нейтралью
- •2.2.1.2 Сеть it с заземленной через сопротивление и нераспределенной нейтралью
- •2.2.1.3 Сеть it с изолированной и распределенной нейтралью
- •2.2.2 Второе замыкание при не устраненном первом
- •2.2.2.1 Сеть it с нераспределенной нейтралью и общим заземлителем потребителей
- •2.2.2.2 Сеть it с распределенной нейтралью и общим заземлителем потребителей
- •2.2.2.3 Сеть it с нераспределенной нейтралью и отдельными заземлителями потребителей
- •2.2.2.4 Сеть it с распределенной нейтралью и отдельными заземлителями потребителей
- •2.3 Использование разделительного трансформатора как меры по переходу на систему заземления it.
- •2.4 Выводы ко второй главе
- •Глава 3. Построение системы питания и защиты ответственных потребителей в сетях с переходом с системы заземления tn на систему заземления it
- •3.1 Расчёт токов короткого замыкания и проверка эффективности работы защиты при косвенном прикосновении на участке tn при питании через понижающий трансформатор
- •3.1.1 Расчет токов однофазного короткого замыкания на участке tn
- •3.1.2 Методика проверки эффективности работы защиты при косвенном прикосновении на участке tn при питании через понижающий трансформатор
- •3.2 Расчёт токов короткого замыкания и проверки защиты при косвенном прикосновении на участке tn при питании от ибп статического типа
- •3.2.1 Расчет тока однофазного кз на участке tn в инверторном режиме работы
- •3.2.2 Расчет тока однофазного кз на участке tn в режиме работы от сети
- •3.2.3 Сравнение инверторного режима работы и режима работы от сети при расчете тока однофазного кз
- •3.2.4 Методика проверки эффективности защиты при косвенном прикосновении на участке tn при питании от ибп статического типа
- •3.3 Расчет токов и проверка эффективности работы защиты при косвенном прикосновении при питании через понижающий трансформатор на участке it
- •3.4 Расчёт токов короткого замыкания при питании от ибп статического типа на участке it
- •3.4.1 Расчет тока кз в инверторном режиме и режиме работы от сети в сетях с нераспределенной нейтралью
- •3.4.2 Расчет тока двухфазного кз в инверторном и режиме работы от сети в сетях с распределенной нейтралью
- •3.5 Проверка эффективности работы защиты при косвенном прикосновении при питании от ибп статического типа
- •3.6 Методика построения системы электроснабжения ответственного потребителя в действующей сети tn с переходом на систему it
- •3.7 Выводы к третьей главе
- •Глава 4. Программный комплекс и расчетно-экспериментальное исследование сетей с переходом от системы заземления tn к системе заземления it
- •4.1 Программный комплекс «Выбор кабелей в сетях до 1 кВ»
- •4.1.1 Выполняемые функции
- •4.1.2 Структура и ведение баз данных нормативно-технической информации
- •4.1.3 Входные данные
- •4.1.4 Выходные данные
- •4.2 Расчетно-эксперементальное исследование методов расчета токов кз в сетях с переходом от системы заземления tn к системе заземления it
- •4.3 Расчетно-эксперементальное исследование методов расчета токов кз сетях с переходом от системы заземления tn к системе заземления it при питании от ибп
- •4.4 Выводы к четвертой главе
- •Заключение
- •Список используемых источников
- •Приложение 1
- •Приложение 2
1.3 Основные положения защиты от поражения электрическим током
Совместно с задачей бесперебойного электроснабжения ответственных потребителей также стоит задача обеспечения защиты от поражения человека электрическим током. Основное правило защиты от поражения электрическим током сформулировано в нормативных документах следующим образом: «Опасные токоведущие части не должны быть доступными, а доступные проводящие части не должны быть опасными (в нормальных условиях и при наличии неисправности)» [9,14,15].
Таким образом, современная система электробезопасности должна обеспечивать защиту человека от поражения в двух наиболее вероятных опасных случаях:
при прямом прикосновении к токоведущим частям электрооборудования;
при косвенном прикосновении к токопроводящим частям электрооборудования.
Под косвенным прикосновением понимают [9] прикосновение человека к открытым проводящим частям оборудования, на которых в нормальном режиме электроустановки отсутствует электрический потенциал, но при каких-либо неисправностях, вызывающих нарушение изоляции или ее пробой на корпус, на этих частях возможно появление опасного (если превосходит допустимое значение 50 В) для жизни человека потенциала (рисунок 1.8). Основной характеристикой прямого прикосновения является то, что наличие защитного проводника никак не влияет на эффективность защиты при прямом прикосновении и какой бы ни была система заземления нейтрали, ток, возвращающийся к источнику питания, равен току, протекающему через тело человека. Основной характеристикой косвенного прикосновения является то, что через человека никогда не протекает полный ток повреждения (всегда какая-то часть, зависящая от типа системы заземления).
Рисунок 1.8 – Прямое (А) и косвенное (Б) прикосновения.
Согласно 16 защитные меры при косвенном прикосновении бывают двух видов:
без автоматического отключения питания [17,18]:
использование систем безопасного сверхнизкого напряжения (БСНН);
защита посредством ограничения энергии разряда;
применение оборудования класса II или с равноценной изоляцией;
использование изолирующих помещений, зон, площадок;
применение электрического разделения цепей;
применение системы местного уравнивания потенциалов;
с использованием автоматического отключения питания, которое почти всегда необходимо, так как предыдущие мероприятия могут быть применены лишь в небольшом количестве случаях. Следует отметить, что [9] диктует для защиты от поражения электрическим током при косвенном прикосновении в электроустановках типа TN применение автоматического отключения питания и лишь в случае невозможности обеспечения заданного времени отключения защита при косвенном прикосновении может быть выполнена с применением мер без автоматического отключения питания.
Автоматическое отключение установки или ее части при повреждении изоляции должно происходить за такое время (приведенное в табл. 1.7.79 [9]), при котором напряжение прикосновения (разность потенциалов между двумя проводящими частями или проводящей частью и землей) не представляет опасности для человека. Чем больше напряжение прикосновения, тем быстрее должно происходить отключение.
Время автоматического отключения питания разнится в зависимости от применяемой системы заземления ТN, IT, TT. Для автоматического отключения питания могут быть применены защитно-коммутационные аппараты, реагирующие на сверхтоки или на дифференциальный ток.