- •Глава 2. Исследование мер по повышению бесперебойности питания ответственных потребителей. 35
- •Глава 3. Построение системы питания и защиты ответственных потребителей в сетях с переходом с системы заземления tn на систему заземления it 58
- •Глава 4. Программный комплекс и расчетно-экспериментальное исследование сетей с переходом от системы заземления tn к системе заземления it 93
- •Введение
- •Глава 1. Электроснабжение ответственных потребителей. Анализ требований к времени отключения токов повреждения в сетях 0,4 кВ в соответствии с новой нормативной базой
- •1.1 Электроснабжение ответственных потребителей
- •1.2 Выбор системы заземления нейтрали при питании ответственных потребителей
- •1.2.1 Система заземления tn
- •1.2.2 Система заземления it
- •1.2.3 Система заземления tt
- •1.2.4 Анализ систем заземления нейтрали и выбор наилучшей с точки зрения бесперебойности питания потребителя
- •1.3 Основные положения защиты от поражения электрическим током
- •1.4 Электрофизические реакции при протекании электрического тока через тело человека
- •1.5 Анализ требований к времени отключения токов повреждения в сетях 0,4 кВ в соответствии с новой нормативной базой
- •1.6 Выводы к первой главе
- •Глава 2. Исследование мер по повышению бесперебойности питания ответственных потребителей.
- •2.1 Электроснабжение ответственных потребителей от источников бесперебойного питания статического типа как мера повышения бесперебойности
- •2.1.1 Источники бесперебойного питания резервного типа (passive standby)
- •2.1.2 Источники бесперебойного питания линейно-интерактивного типа (line interactive)
- •2.1.3 Источники бесперебойного питания с двойным преобразованием (double conversion)
- •2.1.4 Структура схем электроснабжения ответственных потребителей с источниками бесперебойного питания статического типа
- •2.1.4.1 Системы с параллельным резервированием
- •2.1.4.2 Схема с последовательным резервированием
- •2.2 Использование системы заземления it в сетях питания ответственных потребителей как меры по повышению бесперебойности
- •2.2.1 Первое замыкание
- •2.2.1.1 Сеть it с изолированной и нераспределенной нейтралью
- •2.2.1.2 Сеть it с заземленной через сопротивление и нераспределенной нейтралью
- •2.2.1.3 Сеть it с изолированной и распределенной нейтралью
- •2.2.2 Второе замыкание при не устраненном первом
- •2.2.2.1 Сеть it с нераспределенной нейтралью и общим заземлителем потребителей
- •2.2.2.2 Сеть it с распределенной нейтралью и общим заземлителем потребителей
- •2.2.2.3 Сеть it с нераспределенной нейтралью и отдельными заземлителями потребителей
- •2.2.2.4 Сеть it с распределенной нейтралью и отдельными заземлителями потребителей
- •2.3 Использование разделительного трансформатора как меры по переходу на систему заземления it.
- •2.4 Выводы ко второй главе
- •Глава 3. Построение системы питания и защиты ответственных потребителей в сетях с переходом с системы заземления tn на систему заземления it
- •3.1 Расчёт токов короткого замыкания и проверка эффективности работы защиты при косвенном прикосновении на участке tn при питании через понижающий трансформатор
- •3.1.1 Расчет токов однофазного короткого замыкания на участке tn
- •3.1.2 Методика проверки эффективности работы защиты при косвенном прикосновении на участке tn при питании через понижающий трансформатор
- •3.2 Расчёт токов короткого замыкания и проверки защиты при косвенном прикосновении на участке tn при питании от ибп статического типа
- •3.2.1 Расчет тока однофазного кз на участке tn в инверторном режиме работы
- •3.2.2 Расчет тока однофазного кз на участке tn в режиме работы от сети
- •3.2.3 Сравнение инверторного режима работы и режима работы от сети при расчете тока однофазного кз
- •3.2.4 Методика проверки эффективности защиты при косвенном прикосновении на участке tn при питании от ибп статического типа
- •3.3 Расчет токов и проверка эффективности работы защиты при косвенном прикосновении при питании через понижающий трансформатор на участке it
- •3.4 Расчёт токов короткого замыкания при питании от ибп статического типа на участке it
- •3.4.1 Расчет тока кз в инверторном режиме и режиме работы от сети в сетях с нераспределенной нейтралью
- •3.4.2 Расчет тока двухфазного кз в инверторном и режиме работы от сети в сетях с распределенной нейтралью
- •3.5 Проверка эффективности работы защиты при косвенном прикосновении при питании от ибп статического типа
- •3.6 Методика построения системы электроснабжения ответственного потребителя в действующей сети tn с переходом на систему it
- •3.7 Выводы к третьей главе
- •Глава 4. Программный комплекс и расчетно-экспериментальное исследование сетей с переходом от системы заземления tn к системе заземления it
- •4.1 Программный комплекс «Выбор кабелей в сетях до 1 кВ»
- •4.1.1 Выполняемые функции
- •4.1.2 Структура и ведение баз данных нормативно-технической информации
- •4.1.3 Входные данные
- •4.1.4 Выходные данные
- •4.2 Расчетно-эксперементальное исследование методов расчета токов кз в сетях с переходом от системы заземления tn к системе заземления it
- •4.3 Расчетно-эксперементальное исследование методов расчета токов кз сетях с переходом от системы заземления tn к системе заземления it при питании от ибп
- •4.4 Выводы к четвертой главе
- •Заключение
- •Список используемых источников
- •Приложение 1
- •Приложение 2
2.4 Выводы ко второй главе
Сравнительный анализ топологий ИБП показал, что применение ИБП с двойным преобразованием для питания ответственных электроприемников наиболее предпочтительно, так как данная топология обладает рядом преимуществ: обеспечение высокой точности стабилизации синусоидального выходного напряжения в сетевом и автономном режимах, обеспечение стабильной частоты выходного напряжения при отклонениях частоты сети, отсутствие переходных процессов при переключениях с сетевого режима на автономный и наоборот.
Определено, что при построении защиты необходимо учитывать особенности ИБП статического типа топологии двойного преобразования такие как поддержание выходного напряжения и токоограничение инвертора.
Предложено использование системы заземления IT в качестве как основной, так и дополнительной меры по повышению бесперебойности питания ответственных потребителей.
Предложено использование ИБП топологии двойного преобразования для повышения бесперебойности питания в сетях с изолированной нейтралью.
Обосновано использование разделительного трансформатора в качестве средства для перехода из сети с действующей системой заземления TN на сеть с системой заземления IT.
Глава 3. Построение системы питания и защиты ответственных потребителей в сетях с переходом с системы заземления tn на систему заземления it
Как уже было сказано ранее, в действующей сети с системой заземления TN переход на систему заземления IT осуществляется установкой разделительного трансформатора. Таким образом, схема питания ответственного потребителя разбивается на два участка, на которых необходимо обеспечить защиту: участок с системой заземления TN и участок с системой заземления IT. Причем для повышения бесперебойности а обоих участках могут быть установлены ИБП статического типа.
Для определения токов, построения защиты и проверки эффективности работы защиты при косвенном прикосновении обратимся к [14,26,33]
3.1 Расчёт токов короткого замыкания и проверка эффективности работы защиты при косвенном прикосновении на участке tn при питании через понижающий трансформатор
3.1.1 Расчет токов однофазного короткого замыкания на участке tn
Согласно ГОСТ 28249-93 [34] расчет токов несимметричных КЗ выполняется с использованием метода симметричных составляющих. Если электроснабжение электроустановки до 1 кВ осуществляется от сети через понижающий трансформатор, то начальное значение периодической составляющей тока однофазного КЗ от системы рассчитывается по формуле (3.1)
, (3.1)
где Uср.НН - среднее номинальное напряжение сети, в которой произошло короткое замыкание, В;
rI∑ , xI∑ - соответственно суммарное активное и суммарное индуктивное сопротивления прямой последовательности цепи КЗ, мОм. Эти сопротивления равны:
rI∑ = rт + rp + rТА + rкв + rк + rш + r0кб + r1кб + rвл + rд
и x1∑ = xс + xт + xр + xТА + xкв + xш + x1кб + xвл ,
где rт и xт - активное и индуктивное сопротивления прямой последовательности понижающего трансформатора, мОм;
rТА и xТА - активное и индуктивное сопротивления первичных обмоток трансформаторов тока, мОм;
хс - эквивалентное индуктивное сопротивление системы до понижающего трансформатора, мОм, приведенное к ступени низшего напряжения;
rр - активное и индуктивное сопротивления реакторов, мОм;
rкв и xкв - активное и индуктивное сопротивления токовых катушек автоматических выключателей, мОм;
rш и xш - активное и индуктивное сопротивления шинопроводов, мОм;
rк - суммарное активное сопротивление различных контактов, мОм;
r1кб, rвл и x1кб, xвл - активные и индуктивные сопротивления прямой последовательности кабельных и воздушных линий, мОм;
r0∑ и x0∑ - суммарное активное и суммарное индуктивное сопротивления нулевой последовательности расчетной схемы относительно точки КЗ, мОм. Эти сопротивления равны:
r0∑ = r0т + rp + rТА + rкв + rк + r0ш + r0кб + r0вл + rд
и x0∑ = xот + xр + xТА + xкв + x0ш + x0кб + x0вл ,
где r0т и x0т - активное и индуктивное сопротивления нулевой последовательности понижающего трансформатора;
r0ш и x0ш - активное и индуктивное сопротивления нулевой последовательности шинопровода;
r0кб и x0кб - активное и индуктивное сопротивления нулевой последовательности кабеля;
r0вл и x0вл - активное и индуктивное сопротивления нулевой последовательности воздушной линии (r0вл = r1вл, x0вл » 3x1вл).
В [14,35,36,37,38] для сетей типа ТN предложена упрощенная методика расчета тока повреждения и тока однофазного КЗ IK(1). Методика действительна для сетей, питающих конечные электроприемники (I-й, II-й уровень системы электроснабжения), находящиеся достаточно далеко от источника питания.
Выражение для тока однофазного КЗ имеет вид:
(3.2)
где Rph, RPE – соответственно активное сопротивление фазного и нулевого защитного проводника, Ом.
Выражения (2.2) является приближенным, так как в нём имеется ряд допущений:
предполагается, что участок цепи КЗ выше рассматриваемого щита (сборки) представляет 20% от суммарного сопротивления петли фаза-нуль. Другими словами, напряжение между фазой и PE (PEN) проводником составляет 80% номинального фазного напряжения.
Не учитывается реактивное сопротивление кабельных линии сечением S
120
мм2.
Не учитывается сопротивление дуги, контактов и т.д.
