- •Глава 2. Исследование мер по повышению бесперебойности питания ответственных потребителей. 35
- •Глава 3. Построение системы питания и защиты ответственных потребителей в сетях с переходом с системы заземления tn на систему заземления it 58
- •Глава 4. Программный комплекс и расчетно-экспериментальное исследование сетей с переходом от системы заземления tn к системе заземления it 93
- •Введение
- •Глава 1. Электроснабжение ответственных потребителей. Анализ требований к времени отключения токов повреждения в сетях 0,4 кВ в соответствии с новой нормативной базой
- •1.1 Электроснабжение ответственных потребителей
- •1.2 Выбор системы заземления нейтрали при питании ответственных потребителей
- •1.2.1 Система заземления tn
- •1.2.2 Система заземления it
- •1.2.3 Система заземления tt
- •1.2.4 Анализ систем заземления нейтрали и выбор наилучшей с точки зрения бесперебойности питания потребителя
- •1.3 Основные положения защиты от поражения электрическим током
- •1.4 Электрофизические реакции при протекании электрического тока через тело человека
- •1.5 Анализ требований к времени отключения токов повреждения в сетях 0,4 кВ в соответствии с новой нормативной базой
- •1.6 Выводы к первой главе
- •Глава 2. Исследование мер по повышению бесперебойности питания ответственных потребителей.
- •2.1 Электроснабжение ответственных потребителей от источников бесперебойного питания статического типа как мера повышения бесперебойности
- •2.1.1 Источники бесперебойного питания резервного типа (passive standby)
- •2.1.2 Источники бесперебойного питания линейно-интерактивного типа (line interactive)
- •2.1.3 Источники бесперебойного питания с двойным преобразованием (double conversion)
- •2.1.4 Структура схем электроснабжения ответственных потребителей с источниками бесперебойного питания статического типа
- •2.1.4.1 Системы с параллельным резервированием
- •2.1.4.2 Схема с последовательным резервированием
- •2.2 Использование системы заземления it в сетях питания ответственных потребителей как меры по повышению бесперебойности
- •2.2.1 Первое замыкание
- •2.2.1.1 Сеть it с изолированной и нераспределенной нейтралью
- •2.2.1.2 Сеть it с заземленной через сопротивление и нераспределенной нейтралью
- •2.2.1.3 Сеть it с изолированной и распределенной нейтралью
- •2.2.2 Второе замыкание при не устраненном первом
- •2.2.2.1 Сеть it с нераспределенной нейтралью и общим заземлителем потребителей
- •2.2.2.2 Сеть it с распределенной нейтралью и общим заземлителем потребителей
- •2.2.2.3 Сеть it с нераспределенной нейтралью и отдельными заземлителями потребителей
- •2.2.2.4 Сеть it с распределенной нейтралью и отдельными заземлителями потребителей
- •2.3 Использование разделительного трансформатора как меры по переходу на систему заземления it.
- •2.4 Выводы ко второй главе
- •Глава 3. Построение системы питания и защиты ответственных потребителей в сетях с переходом с системы заземления tn на систему заземления it
- •3.1 Расчёт токов короткого замыкания и проверка эффективности работы защиты при косвенном прикосновении на участке tn при питании через понижающий трансформатор
- •3.1.1 Расчет токов однофазного короткого замыкания на участке tn
- •3.1.2 Методика проверки эффективности работы защиты при косвенном прикосновении на участке tn при питании через понижающий трансформатор
- •3.2 Расчёт токов короткого замыкания и проверки защиты при косвенном прикосновении на участке tn при питании от ибп статического типа
- •3.2.1 Расчет тока однофазного кз на участке tn в инверторном режиме работы
- •3.2.2 Расчет тока однофазного кз на участке tn в режиме работы от сети
- •3.2.3 Сравнение инверторного режима работы и режима работы от сети при расчете тока однофазного кз
- •3.2.4 Методика проверки эффективности защиты при косвенном прикосновении на участке tn при питании от ибп статического типа
- •3.3 Расчет токов и проверка эффективности работы защиты при косвенном прикосновении при питании через понижающий трансформатор на участке it
- •3.4 Расчёт токов короткого замыкания при питании от ибп статического типа на участке it
- •3.4.1 Расчет тока кз в инверторном режиме и режиме работы от сети в сетях с нераспределенной нейтралью
- •3.4.2 Расчет тока двухфазного кз в инверторном и режиме работы от сети в сетях с распределенной нейтралью
- •3.5 Проверка эффективности работы защиты при косвенном прикосновении при питании от ибп статического типа
- •3.6 Методика построения системы электроснабжения ответственного потребителя в действующей сети tn с переходом на систему it
- •3.7 Выводы к третьей главе
- •Глава 4. Программный комплекс и расчетно-экспериментальное исследование сетей с переходом от системы заземления tn к системе заземления it
- •4.1 Программный комплекс «Выбор кабелей в сетях до 1 кВ»
- •4.1.1 Выполняемые функции
- •4.1.2 Структура и ведение баз данных нормативно-технической информации
- •4.1.3 Входные данные
- •4.1.4 Выходные данные
- •4.2 Расчетно-эксперементальное исследование методов расчета токов кз в сетях с переходом от системы заземления tn к системе заземления it
- •4.3 Расчетно-эксперементальное исследование методов расчета токов кз сетях с переходом от системы заземления tn к системе заземления it при питании от ибп
- •4.4 Выводы к четвертой главе
- •Заключение
- •Список используемых источников
- •Приложение 1
- •Приложение 2
2.2.2.4 Сеть it с распределенной нейтралью и отдельными заземлителями потребителей
В данном случае замыкание происходит в системе, где в электроустановках каждая открытая проводящая часть или отдельные группы этих частей присоединены к разным заземляющим устройствам и одно из замыканий происходит между нейтральным проводником и корпусом, а другое между фазным проводником и корпусом другой электроустановки (рисунок 2.13).
Рисунок 2.13 – Двойное замыкание фазы и нейтрали в системе IT с отдельными заземляющими устройствами.
Данная ситуация аналогична предыдущей, различие заключается лишь в том, что в этом случае ток замыкания определяется фазным напряжением а не линейным. Отключение так же должно осуществляться устройством защиты по дифференциальному току. Ток замыкания определяется по (2.11):
,
(2.11)
Из приведенных формул можно сделать вывод, что в случае при использовании отдельных заземлителей электроустановок отключение сети должно производиться устройством защиты по дифференциальному току, а при общем заземлителе – защитой от сверхтоков. Как правило, отдельные заземлители применяют на установках, которые расположены достаточно далеко друг от друга. Если же установки находятся рядом, то используется общий заземлитель. Таким образом, можно считать, что при отдельных заземлителях человек не может одновременно коснуться двух корпусов с замыканием.
Кроме того, с точки зрения питания ответственных потребителей, нам необходимо отказаться от УЗО, чтобы не было ложных срабатываний и отключений сети при первом замыкании.
2.3 Использование разделительного трансформатора как меры по переходу на систему заземления it.
В действующей сети с системой заземления TN переход на систему заземления IT может осуществляться установкой разделительного трансформатора.
Разделительный трансформатор — трансформатор, первичная обмотка которого электрически не связана со вторичными обмотками. Силовые разделительные трансформаторы предназначены для повышения безопасности электросетей, при случайных одновременных прикасаниях к земле и токоведущим частям или нетоковедущим частям, которые могут оказаться под напряжением в случае повреждения изоляции. Принцип действия разделительного трансформатора заключается в гальванической развязке напряжения, питающего приемник и напряжения, которое подается от линии электроснабжения.
Достигается такой эффект за счёт того, что между первичной и вторичной обмоткой такого трансформатора устанавливается усиленная (минимум - двойная) электроизоляция или заземленный металлический экран, что позволяет гарантированно избежать пробоя.
Чаще всего разделительные трансформаторы встречаются с коэффициентом трансформации 1, то есть напряжение на его выходе равняется напряжению на его входе.
Примером таких трансформаторов могут служить трансформаторы типа ТРТ, выпускаемые компанией ООО «ЭнергоЗащитные Системы» в Санкт-Петербурге. Основные характеристики таких трансформаторов:
Мощность от 6 до 120 кВА;
Схема соединения обмоток Y0/Y или Y0/Д;
Входное напряжение 380/220, выходное напряжение 380/220.
На рисунке 2.14 представлена схема подключения разделительного трансформатора.
Рисунок 2.14 – Схема подключения разделительного трансформатора
