
- •Глава 2. Исследование мер по повышению бесперебойности питания ответственных потребителей. 35
- •Глава 3. Построение системы питания и защиты ответственных потребителей в сетях с переходом с системы заземления tn на систему заземления it 58
- •Глава 4. Программный комплекс и расчетно-экспериментальное исследование сетей с переходом от системы заземления tn к системе заземления it 93
- •Введение
- •Глава 1. Электроснабжение ответственных потребителей. Анализ требований к времени отключения токов повреждения в сетях 0,4 кВ в соответствии с новой нормативной базой
- •1.1 Электроснабжение ответственных потребителей
- •1.2 Выбор системы заземления нейтрали при питании ответственных потребителей
- •1.2.1 Система заземления tn
- •1.2.2 Система заземления it
- •1.2.3 Система заземления tt
- •1.2.4 Анализ систем заземления нейтрали и выбор наилучшей с точки зрения бесперебойности питания потребителя
- •1.3 Основные положения защиты от поражения электрическим током
- •1.4 Электрофизические реакции при протекании электрического тока через тело человека
- •1.5 Анализ требований к времени отключения токов повреждения в сетях 0,4 кВ в соответствии с новой нормативной базой
- •1.6 Выводы к первой главе
- •Глава 2. Исследование мер по повышению бесперебойности питания ответственных потребителей.
- •2.1 Электроснабжение ответственных потребителей от источников бесперебойного питания статического типа как мера повышения бесперебойности
- •2.1.1 Источники бесперебойного питания резервного типа (passive standby)
- •2.1.2 Источники бесперебойного питания линейно-интерактивного типа (line interactive)
- •2.1.3 Источники бесперебойного питания с двойным преобразованием (double conversion)
- •2.1.4 Структура схем электроснабжения ответственных потребителей с источниками бесперебойного питания статического типа
- •2.1.4.1 Системы с параллельным резервированием
- •2.1.4.2 Схема с последовательным резервированием
- •2.2 Использование системы заземления it в сетях питания ответственных потребителей как меры по повышению бесперебойности
- •2.2.1 Первое замыкание
- •2.2.1.1 Сеть it с изолированной и нераспределенной нейтралью
- •2.2.1.2 Сеть it с заземленной через сопротивление и нераспределенной нейтралью
- •2.2.1.3 Сеть it с изолированной и распределенной нейтралью
- •2.2.2 Второе замыкание при не устраненном первом
- •2.2.2.1 Сеть it с нераспределенной нейтралью и общим заземлителем потребителей
- •2.2.2.2 Сеть it с распределенной нейтралью и общим заземлителем потребителей
- •2.2.2.3 Сеть it с нераспределенной нейтралью и отдельными заземлителями потребителей
- •2.2.2.4 Сеть it с распределенной нейтралью и отдельными заземлителями потребителей
- •2.3 Использование разделительного трансформатора как меры по переходу на систему заземления it.
- •2.4 Выводы ко второй главе
- •Глава 3. Построение системы питания и защиты ответственных потребителей в сетях с переходом с системы заземления tn на систему заземления it
- •3.1 Расчёт токов короткого замыкания и проверка эффективности работы защиты при косвенном прикосновении на участке tn при питании через понижающий трансформатор
- •3.1.1 Расчет токов однофазного короткого замыкания на участке tn
- •3.1.2 Методика проверки эффективности работы защиты при косвенном прикосновении на участке tn при питании через понижающий трансформатор
- •3.2 Расчёт токов короткого замыкания и проверки защиты при косвенном прикосновении на участке tn при питании от ибп статического типа
- •3.2.1 Расчет тока однофазного кз на участке tn в инверторном режиме работы
- •3.2.2 Расчет тока однофазного кз на участке tn в режиме работы от сети
- •3.2.3 Сравнение инверторного режима работы и режима работы от сети при расчете тока однофазного кз
- •3.2.4 Методика проверки эффективности защиты при косвенном прикосновении на участке tn при питании от ибп статического типа
- •3.3 Расчет токов и проверка эффективности работы защиты при косвенном прикосновении при питании через понижающий трансформатор на участке it
- •3.4 Расчёт токов короткого замыкания при питании от ибп статического типа на участке it
- •3.4.1 Расчет тока кз в инверторном режиме и режиме работы от сети в сетях с нераспределенной нейтралью
- •3.4.2 Расчет тока двухфазного кз в инверторном и режиме работы от сети в сетях с распределенной нейтралью
- •3.5 Проверка эффективности работы защиты при косвенном прикосновении при питании от ибп статического типа
- •3.6 Методика построения системы электроснабжения ответственного потребителя в действующей сети tn с переходом на систему it
- •3.7 Выводы к третьей главе
- •Глава 4. Программный комплекс и расчетно-экспериментальное исследование сетей с переходом от системы заземления tn к системе заземления it
- •4.1 Программный комплекс «Выбор кабелей в сетях до 1 кВ»
- •4.1.1 Выполняемые функции
- •4.1.2 Структура и ведение баз данных нормативно-технической информации
- •4.1.3 Входные данные
- •4.1.4 Выходные данные
- •4.2 Расчетно-эксперементальное исследование методов расчета токов кз в сетях с переходом от системы заземления tn к системе заземления it
- •4.3 Расчетно-эксперементальное исследование методов расчета токов кз сетях с переходом от системы заземления tn к системе заземления it при питании от ибп
- •4.4 Выводы к четвертой главе
- •Заключение
- •Список используемых источников
- •Приложение 1
- •Приложение 2
2.1.4 Структура схем электроснабжения ответственных потребителей с источниками бесперебойного питания статического типа
Приходиться констатировать, что не существует электрической сети, обладающей 100% надежностью, гарантирующей отсутствие перебоев в электроснабжении. На сегодняшний день самым распространенным способом защиты критичной нагрузки от перерыва питания является использование одномодульных ИБП с топологией двойного преобразования [5,26]. Основными элементами одномодульного ИБП, работающего по топологии двойного преобразования, являются выпрямитель, инвертор, аккумуляторные батареи, зарядное устройство, а также устройства коммутации цепи Байпаса. Одномодульная система отличается высокой надежностью и простотой. Она является оптимальным решением для нагрузок, допускающих кратковременные запланированные отключения для обслуживания ИБП. Однако в моменты технического обслуживания ИБП или выполнения других регламентных работ возникает необходимость его перевода в режим байпас. Для некоторых видов нагрузок с непрерывным технологическим процессом данный риск недопустим. Кроме того, нельзя забывать о возможности выхода из строя самого ИБП. Для решения этой проблемы производители ИБП предложили следующие конфигурации.
2.1.4.1 Системы с параллельным резервированием
Система с параллельным резервированием состоит из двух и более модулей ИБП, включенных в параллель и работающих на общую нагрузку (рисунок 2.5).
По отношению к проектной нагрузке система должна иметь определенную избыточность по мощности в виде одного или нескольких дополнительных модулей для обеспечения резерва.
Рисунок 2.5 Система с параллельным резервированием
Как правило, каждый модуль оснащен своим батарейным блоком, хотя и не исключен вариант использования общего батарейного комплекта для всей системы в целом. При безаварийной работе нагрузка системы равномерно распределяется между модулями ИБП, а в случае выхода из строя или принудительного отключения одного из них нагрузка распределяется среди оставшихся модулей. Такая схема включения обеспечивает высокую степень защиты (99,99%). При этом процесс технического обслуживания отдельных модулей не приводит к временному питанию нагрузки от «грязной» сети. Однако все еще остается необходимость отключения системы при проведении работ с шиной питания нагрузки или оборудованием, расположенным между ИБП и нагрузкой. Несмотря на простоту концепции построения параллельной системы резервирования, методы ее конкретной реализации существенно различаются у разных производителей ИБП. Главное различие заключается в механизме распределения нагрузки между модулями. Большинство производителей используют инверторы с широтно-импульсной модуляцией (ШИМ), обладающей высокими динамическими характеристиками. Однако для их параллельной работы на общую нагрузку требуются дополнительные устройства синхронизации. При этом один из модулей ИБП становится ведущим и по его выходному напряжению синхронизируются остальные модули системы. Недостаток данного решения очевиден. При выходе из строя ведущего модуля или цепей синхронизации выходит из строя вся система.
2.1.4.2 Схема с последовательным резервированием
Данная схема состоит из одного или нескольких основных модулей и одного резервного [5,26]. Каждый основной модуль работает на собственную нагрузку. Резервный модуль используется в качестве первичного источника питания входов Байпас основных модулей системы (рисунок 2.6).
Если к моменту его разряда питание не восстановится, произойдет автоматический переход модуля в Байпас, то есть на резервный блок. Разумеется, в этом случае резервный блок становится недоступен для оставшихся основных модулей, и при переходе в Байпас второго основного модуля подключенный к нему сегмент нагрузки запитывается от незащищенного входа системы.
Рисунок 2.6 – Схема с последовательным резервированием
Итак, особенности систем с последовательным резервированием:
резервный модуль работает в режиме Off-Line;
по входу Байпас основных модулей подключен резервный ИБП, а не сеть;
данная схема – хороший способ модернизации существующей одномодульной системы для повышения ее надежности путем включения дополнительного модуля.
На основании этого схему с последовательным резервированием можно рассматривать как существенно более надежную в сравнении с одномодульной. Дополнительное преимущество системы с последовательным резервированием заключается в возможности использования разноранговых и разнотипных модулей. К недостаткам схем с последовательным резервированием можно отнести:
для реализации подобной схемы требуется большое количество автоматических переключателей и защитных автоматов в сравнении с параллельными системами;
система с последовательным резервированием нуждается в дополнительной цепи коммутации источника питания входов байпас основных модулей (для систем 3 и более модулей);
для модернизации простейшей двухмодульной схемы (1 раб. + 1 рез.) требуются большие затраты;
мощность каждого сегмента нагрузки ограничена мощностью соответствующего основного модуля ИБП.
Таким образом, применение схемы последовательного резервирования, с одной стороны, облегчает обслуживание модулей и переконфигурирование системы, но, с другой стороны, приводит к снижению надежности в целом. Подобная конфигурация наиболее эффективна в варианте с двумя модулями (1 раб. + 1 рез.). Однако при увеличении количества основных модулей рекомендуется использовать другие схемы резервирования.