Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
СУ ЭП гл. 1-10 для АЭП-заочников.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
3.63 Mб
Скачать

4.3. Линеаризация элементов су эп

При анализе и синтезе СУ ЭП применяются математические модели (ММ), которые описывается в общем случае обыкновенными дифференциальными уравнениями (ОДУ). Большинство реальных ОУ в широком диапазоне изменения их переменных являются нелинейными, однако, как показывает практика, в области достаточно малых отклонений координат (переменных) они могут быть аппроксимированы линейными ММ. Свойство линейности ММ ОУ позволяет при исследовании САУ воспользоваться преобразованием Лапласа к ММ в форме ОДУ и свести интегрирование ОДУ к простым алгебраическим преобразованиям. Кроме того, линейность преобразований и получаемых линейных подпространств координат лежит в основе векторно-матричных моделей САУ и их исследования в пространстве состояний, т. е. во временной области. Последнее обстоятельство позволяет применить при синтезе и анализе САУ упоминаемые ранее компьютерные системы Matlab, MathCAD, Maple V, Mathematica и др., базирующиеся на матричных методах исследования линейных систем.

Любая линейная система удовлетворяет свойствам суперпозиции и гомогенности. Первое свойство означает, что произвольная сумма аддитивных воздействий x1(t) + x2(t) на входе САУ дает реакцию y1(t) + y2(t) на выходе САУ. Второе свойство предполагает выполнение условия масштабируемости, т. е. при изменении входного сигнала x1 в k раз выходной сигнал y1 линейной САУ изменится соответственно в k раз. Следует отметить, что подавляющее большинство механических и электрических элементов САУ являются линейными в достаточно широком диапазоне изменения их переменных (координат) относительно стационарного режима.

Вместе с тем, даже нелинейные элементы СУ ЭП можно линеаризовать при условии достаточно малых отклонений координат в окрестности точки стационарного режима (рабочей точки).

Любую непрерывную функцию y(x) в окрестности рабочей точки x = x0 можно разложить в ряд Тейлора

(4.16)

В окрестности рабочей точки при малых отклонениях переменной x от x0 выражение (4.16) можно аппроксимировать линейной формой

, (4.17)

где k – тангенс угла наклона касательной к кривой в точке x0.

Выражение (4.17) можно преобразовать к виду

(4.18)

или . (4.19)

Данный метод линеаризации иногда еще называют методом касательной линеаризации в рабочей точке x0 или вдоль рабочей траектории

.

Рассмотрим пример линеаризации нелинейного уравнения, описывающего зависимость электромагнитного момента M двигателя постоянного тока от тока якоря iя и магнитного потока Ф,

M = CмФ iя , (4.20)

где Cм – конструктивная постоянная двигателя.

Уравнение (4.20) относится к классу нелинейных уравнений, поскольку содержит произведение координат электродвигателя – магнитного потока и тока якоря. Линеаризуем (4.20) в окрестности рабочей точки M0(Ф0, iя0 ), соответствующей, например, номинальному режиму работы двигателя, т. е. при M0= Mн, Ф0= Фн, iя0= iян :

. (4.21) Пренебрегая в (4.21) произведением приращений координат получим линеаризованное уравнение в приращениях

. (4.22)

В этом уравнении Ф0 и iя0 предполагаются величинами постоянными, а, следовательно, уравнение (4.22) относится к классу линейных (линеаризованных в рабочей точке) уравнений.

Если управление двигателем осуществляется одновременно по цепям якоря и магнитного потока (цепи возбуждения двигателя), то рабочая точка в процессе управления будет смещаться относительно начального (номинального) режима, образуя семейство рабочих точек или рабочую траекторию. В этом случае при применении уравнения (4.22) говорят о линеаризации исходного нелинейного уравнения (4.20) вдоль рабочей траектории M0 = Cм Ф0 i я0 .

Помимо касательной линеаризации при исследовании нелинейных СУ ЭП в частотной области применяют метод гармонической линеаризации, а при исследовании стохастических СУ ЭП - стохастической линеаризации [3].