
- •Министерство образования России
- •Используемая аббревиатура
- •Введение
- •1. Классификация систем управления электроприводами
- •1. По степени автоматизации функций управления:
- •2. По характеру протекания процессов в су эп и, соответственно, форме математического описания:
- •3. По наличию существенных нелинейностей в су эп:
- •По типу обратных связей:
- •По принципу управления (характеру задач управления):
- •По числу и связности каналов управления:
- •По способу преобразования подводимой энергии:
- •По типу регулируемой локальной координаты:
- •По типу регуляторов, применяемых в устройстве управления:
- •По типу элементной базы устройства управления:
- •2. Обобщенная функциональная схема су эп
- •3. Основные задачи исследования и этапы проектирования
- •3.1. Основные задачи исследования су эп
- •3.2. Основные положения системного подхода при проектировании су эп
- •3.3. Стадии проектирования, регламентированные госТом
- •4. Математические модели элементов су эп
- •4.1. Методы описания и исследования динамических управляемых объектов в частотной и временной области
- •4.2. Уравнение Лагранжа и дифференциальные уравнения электромеханических систем управления (эмсу)
- •4.3. Линеаризация элементов су эп
- •4.4. Двигатель постоянного тока как объект управления
- •4.5. Асинхронный двигатель как объект управления
- •4.6. Электромашинный преобразователь как объект управления
- •4.7. Тиристорные преобразователи как объекты управления
- •4.8. Математические модели датчиков координат су эп
- •4.9. Математические модели регуляторов су эп
- •5. Статические и динамические характеристики су эп
- •5.1. Статика су эп. Коэффициенты ошибок су эп по положению, скорости и ускорению
- •6.2. Динамика су эп. Свободные и вынужденные переходные процессы
- •Общие принципы построения су эп
- •6.1. Релейно-контакторные су эп. Реализация пуско-тормозных режимов су эп постоянного и переменного тока
- •6.1.1. Рксу асинхронным двигателем с короткозамкнутым ротором
- •6.1.2. Рксу асинхронным двигателем с фазным ротором
- •6.1.3. Рксу двигателем постоянного тока
- •6.2. Системы стабилизации выходной координаты объекта управления. Типовые методы улучшения динамики су эп
- •В статике, т. Е. В установившихся (квазиустановившихся) режимах функционирования систем стабилизации можно сформулировать два основных тесно взаимосвязанных требования:
- •Динамическую точность систем стабилизации оценивают по величине
- •6.2.1. Форсирование управляющего воздействия.
- •6.2.2. Компенсация больших постоянных времени объекта управления
- •6.3. Системы программного управления. Способы ограничения координат су эп
- •6.3.1. Ограничение координат сау применением дополнительных нелинейных обратных связей.
- •6.3.3. Ограничение координат сау посредством ограничения задающих воздействий. Этот способ ограничения координат нашел широкое распространение в
- •6.4. Следящие системы управления и системы воспроизведения движений. Понятие добротности су эп
- •7. Методы синтеза су эп
- •7.1. Общая постановка задачи синтеза
- •7.2. Типовые регуляторы и корректирующие звенья су эп
- •7.3. Последовательная коррекция су э п частотными методами
- •7.3.1. Коррекция с опережением по фазе
- •7.3.2. Коррекция с отставанием по фазе
- •7.3.3. Коррекция введением интеграторов
- •7.4. Синтез систем с подчиненным регулированием координат
- •7.5. Методика структурно-параметрического синтеза контуров регулирования су эп по желаемой передаточной функции
- •7.6. Синтез оптимальных по быстродействию су эп с апериодической реакцией
- •8. Су эп постоянного тока
- •8.1. Синтез системы регулирования скорости “Тиристорный преобразователь - двигатель постоянного тока”
- •8.1.1. Синтез контура регулирования тока якоря
- •8.1.2. Синтез контура регулирования скорости.
- •Интегрирующей сар скорости при ударном приложении нагрузки на валу электропривода
- •8.2. Синтез системы регулирования скорости “Генератор - двигатель постоянного тока”
- •8.2.1. Одноконтурная сар тока якоря
- •8.2.2. Двухконтурная сар тока якоря
- •8.3. Синтез системы регулирования э.Д.С. Двигателя
- •Для расчета параметров принципиальной схемы пи-регулятора э.Д.С.
- •8.4. Система двухзонного регулирования скорости Применяется в тех случаях, когда требуется обеспечить работу
- •8.5. Системы регулирования положения рабочего органа
- •8.5.1. Сар положения с линейным регулятором
- •Подставляя в это соотношение выражение для Kрп в режиме средних перемещений получим
- •8.6. Следящие системы управления электроприводами
- •8.6.1. Добротность сау, синтез инвариантных сау по отношению к задающим и возмущающим воздействиям
- •8.6.2. Типовые структуры следящих электроприводов
- •9. Су эп переменного тока
- •9.1. Способы управления асинхронным двигателем
- •9.2. Силовые преобразователи, применяемые для управления асинхронными электродвигателями
- •9.2.1. Преобразователи частоты с автономным инвертором напряжения
- •9.2.2. Преобразователи частоты с автономным инвертором тока
- •9.2.3. Преобразователи частоты с непосредственной связью с сетью
- •9.3. Су эп со звеном постоянного тока
- •9.3.1. Система частотного управления ад с iR- компенсацией
- •9.3.2. Система частотно-токового управления ад
- •10. Дискретные и дискретно-непрерывные сау
- •10.1. Дискретизация сигналов и z-преобразование
- •10.2. Дискретные передаточные функции и разностные уравнения
- •10.3. Синтез цифровых систем управления
- •10.3.1. Метод дискретизации аналоговых регуляторов класса “вход - выход”
- •10.3.2. Метод переменного коэффициента усиления
- •10.3.3. Метод синтеза апериодических дискретно-непрерывных сау с регуляторами состояния
- •Синтез свободного движения сау
- •Синтез вынужденного движения сау
Интегрирующей сар скорости при ударном приложении нагрузки на валу электропривода
Uрс = Uзт = Kрс Kс с = Kт iс = Kт Kд Mс ,
откуда с = (Kт Kд / Kрс Kс)Mс .
Подставляя в эту формулу выражение для Kрс и произведя сокращения, получим:
с = (2Tc / Jпр)Mс ,
где Jпр – приведенный к валу двигателя момент инерции электропривода.
Таким образом, чем выше быстродействие ЗКРС (меньше Tc) и больше приведенный момент инерции, тем меньше статическая ошибка регулирования скорости. В двукратно интегрирующей системе статическая ошибка регулирования скорости отсутствует, т. е. она является астатической по нагрузке на валу электропривода. Максимальный динамический провал (выброс) скорости в такой системе можно оценить по эмпирической формуле:
с = (1,9Tc / Jпр)Mс .
8.2. Синтез системы регулирования скорости “Генератор - двигатель постоянного тока”
Система “Г-Д” применяется для регулирования скорости мощных электроприводов (сотни кВт – единицы МВт) прокатных станов, бумагоделательных машин, компрессоров и др. В сравнении с мощными тиристорными системами управления электромашинные САУ несущественно снижают cos питающей электросети, не засоряют сеть высшими гармониками, а следовательно, не вызывают дополнительных потерь у других потребителей электроэнергии, однако имеют низкий к.п.д., большую установленную мощность, невысокое быстродействие, требуют больших производственных площадей.
Процедура синтеза системы регулирования скорости на основе электромашинного модуля “Г-Д” отличается от рассмотренной выше только в части синтеза САР тока якоря.
Применяют два варианта структур ЗКРТ:
одноконтурная САР тока якоря;
двухконтурная САР тока якоря с внутренним контуром
регулирования э.д.с. (напряжения) генератора.
Электромашинные системы регулирования скорости электроприводов постоянного тока чаще всего выполняются трехконтурными с подчиненными контурами регулирования тока якоря и напряжения генератора.
8.2.1. Одноконтурная сар тока якоря
Структурная схема САР приведена на рис. 8. 8.
Объект управления содержит 2 большие постоянные времени – Tг , Tэ .
В результате применения типовой методики синтеза (см. гл. 8.1) получим:
Рис. 8.8. Структурная схема одноконтурной САР тока якоря
Синтезированный регулятор тока якоря имеет ПИД-структуру и компенсирует две БПВ объекта управления.
8.2.2. Двухконтурная сар тока якоря
Структурная схема САР приведена на рис. 8. 9.
Рис. 8.9. Структурная схема двухконтурной САР тока якоря
Внутренний контур регулирования э. д. с. (напряжения) генератора содержит регулируемый по цепи возбуждения генератор (Г), тиристорный возбудитель (ТВ) и регулятор возбуждения. Внешний контур регулирования тока якоря дополнительно содержит цепь параллельно соединенных якорей генератора и двигателя. Полагая, что требования к динамике контура регулирования напряжения генератора вполне могут удовлетворить динамическим показателям фильтра Баттерворта 2-го порядка, применим типовую методику структурно-параметрического синтеза контуров регулирования.
Регулятор напряжения генератора (РН) в соответствиие с данной методикой обладает ПИ-структурой
Передаточная
функция замкнутого контура регулирования
напряжения
(ЗКРН) с таким регулятором имеет вид:
г
де
Tн
- постоянная времени регулирования
ЗКРН, аппроксимированного апериодическим
звеном первого порядка, Tн
= 2T
н .
Регулятор тока (РТ) якоря генератора в соответствиие с данной
методикой также обладает ПИ-структурой
Передаточная функция замкнутого контура регулирования тока якоря
(
ЗКРТ)
с таким регулятором имеет вид:
где Tт - постоянная времени регулирования ЗКРТ, аппроксимированного апериодическим звеном первого порядка, Tт= 2T т .
Процедура синтеза ЗКРС в системе “Г-Д” аналогична рассмотренной в разделе 8.4.1. Поскольку величина Tт в системе “Г - Д” с внутренним контуром регулирования напряжения в 2 - 3 раза больше, чем в системе “ТП - Д” (за счет дополнительной инерции внутреннего ЗКРН), здесь целесообразно применять компенсацию э.д.с. двигателя для повышения быстродействия САР в переходных режимах.