
- •Министерство образования России
- •Используемая аббревиатура
- •Введение
- •1. Классификация систем управления электроприводами
- •1. По степени автоматизации функций управления:
- •2. По характеру протекания процессов в су эп и, соответственно, форме математического описания:
- •3. По наличию существенных нелинейностей в су эп:
- •По типу обратных связей:
- •По принципу управления (характеру задач управления):
- •По числу и связности каналов управления:
- •По способу преобразования подводимой энергии:
- •По типу регулируемой локальной координаты:
- •По типу регуляторов, применяемых в устройстве управления:
- •По типу элементной базы устройства управления:
- •2. Обобщенная функциональная схема су эп
- •3. Основные задачи исследования и этапы проектирования
- •3.1. Основные задачи исследования су эп
- •3.2. Основные положения системного подхода при проектировании су эп
- •3.3. Стадии проектирования, регламентированные госТом
- •4. Математические модели элементов су эп
- •4.1. Методы описания и исследования динамических управляемых объектов в частотной и временной области
- •4.2. Уравнение Лагранжа и дифференциальные уравнения электромеханических систем управления (эмсу)
- •4.3. Линеаризация элементов су эп
- •4.4. Двигатель постоянного тока как объект управления
- •4.5. Асинхронный двигатель как объект управления
- •4.6. Электромашинный преобразователь как объект управления
- •4.7. Тиристорные преобразователи как объекты управления
- •4.8. Математические модели датчиков координат су эп
- •4.9. Математические модели регуляторов су эп
- •5. Статические и динамические характеристики су эп
- •5.1. Статика су эп. Коэффициенты ошибок су эп по положению, скорости и ускорению
- •6.2. Динамика су эп. Свободные и вынужденные переходные процессы
- •Общие принципы построения су эп
- •6.1. Релейно-контакторные су эп. Реализация пуско-тормозных режимов су эп постоянного и переменного тока
- •6.1.1. Рксу асинхронным двигателем с короткозамкнутым ротором
- •6.1.2. Рксу асинхронным двигателем с фазным ротором
- •6.1.3. Рксу двигателем постоянного тока
- •6.2. Системы стабилизации выходной координаты объекта управления. Типовые методы улучшения динамики су эп
- •В статике, т. Е. В установившихся (квазиустановившихся) режимах функционирования систем стабилизации можно сформулировать два основных тесно взаимосвязанных требования:
- •Динамическую точность систем стабилизации оценивают по величине
- •6.2.1. Форсирование управляющего воздействия.
- •6.2.2. Компенсация больших постоянных времени объекта управления
- •6.3. Системы программного управления. Способы ограничения координат су эп
- •6.3.1. Ограничение координат сау применением дополнительных нелинейных обратных связей.
- •6.3.3. Ограничение координат сау посредством ограничения задающих воздействий. Этот способ ограничения координат нашел широкое распространение в
- •6.4. Следящие системы управления и системы воспроизведения движений. Понятие добротности су эп
- •7. Методы синтеза су эп
- •7.1. Общая постановка задачи синтеза
- •7.2. Типовые регуляторы и корректирующие звенья су эп
- •7.3. Последовательная коррекция су э п частотными методами
- •7.3.1. Коррекция с опережением по фазе
- •7.3.2. Коррекция с отставанием по фазе
- •7.3.3. Коррекция введением интеграторов
- •7.4. Синтез систем с подчиненным регулированием координат
- •7.5. Методика структурно-параметрического синтеза контуров регулирования су эп по желаемой передаточной функции
- •7.6. Синтез оптимальных по быстродействию су эп с апериодической реакцией
- •8. Су эп постоянного тока
- •8.1. Синтез системы регулирования скорости “Тиристорный преобразователь - двигатель постоянного тока”
- •8.1.1. Синтез контура регулирования тока якоря
- •8.1.2. Синтез контура регулирования скорости.
- •Интегрирующей сар скорости при ударном приложении нагрузки на валу электропривода
- •8.2. Синтез системы регулирования скорости “Генератор - двигатель постоянного тока”
- •8.2.1. Одноконтурная сар тока якоря
- •8.2.2. Двухконтурная сар тока якоря
- •8.3. Синтез системы регулирования э.Д.С. Двигателя
- •Для расчета параметров принципиальной схемы пи-регулятора э.Д.С.
- •8.4. Система двухзонного регулирования скорости Применяется в тех случаях, когда требуется обеспечить работу
- •8.5. Системы регулирования положения рабочего органа
- •8.5.1. Сар положения с линейным регулятором
- •Подставляя в это соотношение выражение для Kрп в режиме средних перемещений получим
- •8.6. Следящие системы управления электроприводами
- •8.6.1. Добротность сау, синтез инвариантных сау по отношению к задающим и возмущающим воздействиям
- •8.6.2. Типовые структуры следящих электроприводов
- •9. Су эп переменного тока
- •9.1. Способы управления асинхронным двигателем
- •9.2. Силовые преобразователи, применяемые для управления асинхронными электродвигателями
- •9.2.1. Преобразователи частоты с автономным инвертором напряжения
- •9.2.2. Преобразователи частоты с автономным инвертором тока
- •9.2.3. Преобразователи частоты с непосредственной связью с сетью
- •9.3. Су эп со звеном постоянного тока
- •9.3.1. Система частотного управления ад с iR- компенсацией
- •9.3.2. Система частотно-токового управления ад
- •10. Дискретные и дискретно-непрерывные сау
- •10.1. Дискретизация сигналов и z-преобразование
- •10.2. Дискретные передаточные функции и разностные уравнения
- •10.3. Синтез цифровых систем управления
- •10.3.1. Метод дискретизации аналоговых регуляторов класса “вход - выход”
- •10.3.2. Метод переменного коэффициента усиления
- •10.3.3. Метод синтеза апериодических дискретно-непрерывных сау с регуляторами состояния
- •Синтез свободного движения сау
- •Синтез вынужденного движения сау
6.2. Системы стабилизации выходной координаты объекта управления. Типовые методы улучшения динамики су эп
К таким САУ относятся, прежде всего, системы управления с непрерывным технологическим процессом (непрерывные прокатные станы, бумагоделательные машины, установки для производства полимерных материалов и др.). Требования к системам стабилизации формулируются в статике и в динамике.
В статике, т. Е. В установившихся (квазиустановившихся) режимах функционирования систем стабилизации можно сформулировать два основных тесно взаимосвязанных требования:
обеспечение статической точности регулирования выходной координаты;
обеспечение диапазона регулирования выходной координаты с заданной статической точностью.
Типичным примером стабилизируемой координаты в СУ ЭП является линейная или угловая скорость движения рабочего механизма. На рис. 6.8. приведена статическая (механическая) характеристика электропривода постоянного тока.
Из рассмотрения механической характеристики следует, что абсолютная величина статической ошибки стабилизации скорости ∆c не зависит от скорости холостого хода ( 0 , 0) а зависит от момента нагрузки на валу электропривода, поэтому оценку статической ошибки производят для некоторого среднего или номинального момента нагрузки. Зададимся диапазоном изменения нагрузки от Mmin= 0 до Mmax , тогда Mср=1/2(Mmin+ Mmax) – среднее значение момента нагрузки.
Р
ис.
6.8. Механическая характеристика
электропривода постоянного тока
Абсолютная величина статической ошибки стабилизации скорости ∆c рассчитывается по формуле:
∆c = 0 - р ,
где р – рабочая скорость электропривода.
Относительная величина статической ошибки:
Заметим, что величина относительной статической ошибки стабилизации скорости возрастает с уменьшением рабочей скорости.
Диапазон изменения любой координаты САУ всегда ограничен, в частности, для систем стабилизации скорости он фактически не превышает
100000. Диапазон стабилизируемых скоростей можно оценить следующим образом:
D = max - min - абсолютная оценка,
δD= max /min - относительная оценка.
В отношении диапазона регулирования системы стабилизации скорости электропривода условно разделяют на системы:
малого диапазона (δD 3);
среднего диапазона (3 >δD 50);
широкого диапазона (δD > 50).
Требования точности и диапазона регулирования скорости тесно взаимосвязаны:
Очевидно, что если требование к статической точности будет
удовлетворено внизу заданного диапазона стабилизируемой координаты (при min в рассматриваемом примере), то тем более оно будет удовлетворено вверху заданного диапазона.
Статическая ошибка в системе стабилизации некоторой координаты теоретически может быть сведена к нулю за счет включения интегральной составляющей в закон регулирования этой координаты (интегратора в структуру регулятора) или реализации скользящего режима во внешнем контуре (релейного закона управления с большой частотой переключения реле) [3, 4]. Система управления в этом случае становится астатической (нулевого или первого порядка) и ее квазиустановившийся режим работы характеризуется отсутствием статической ошибки регулирования.
В динамике, т. е. в режимах отработки системой изменений задающих и возмущающих воздействий внешней среды, к системе стабилизации могут предъявляться следующие требования:
а) в частотной области:
обеспечение требуемой полосы пропускания замкнутого контура или частоты среза разомкнутого контура регулирования (Гц);
обеспечение требуемых запасов по амплитуде и фазе логарифмической частотной характеристики (L, );
б) во временной области:
обеспечение динамической точности стабилизации выходной координаты xвых(t);
обеспечение быстродействия отработки ошибок регулирования при изменениях задающих и возмущающих воздействий (с);
обеспечение требования к допустимому перерегулированию (%), колебательности выходной координаты xвых(t) (число колебаний) и т.п.