
- •The ministry of education and science of ukraine kharkiv national university of radio electronics
- •1. The Basics of Microsoft Foundation Classes
- •Mfc general information
- •A Framework of mfc-program
- •Creating the Application Class
- •Creating the Frame-Window Class
- •Declaring a Message Map and instantiation of application object global instance
- •Defining a Message Map
- •Messages and their processing in mfc-programs
- •Writing Message Map Functions
- •Message boxes and menus in mfc-programs
- •2. Dialog windows
- •2.1 Modal and modeless dialog windows
- •2.2 The control elements of dialog window
- •CListBox::AddString (lpctstr lpszItem ); // Call this member function to add a string (lpszItem) to a list box;
- •3. Additional control elements in mfc-programs. Working with icons, cursors, raster images
- •3.1 Additional control elements
- •Radio buttons
- •Afx_msg void cWnd::OnVScroll( uint nSbCode, uint nPos, cScrollBar* pScrollBar ); afx_msg void cWnd::OnHScroll( uint nSbCode, uint nPos, cScrollBar* pScrollBar );
- •Afx_msg void OnVScroll( uint nSbCode, uint nPos, cScrollBar* pScrollBar );
- •Working with icons, cursors, raster images
- •The icons and cursor registration
- •Icon and cursor loading
- •4. The elements of text processing in mfc
- •The redrawing problem decision
- •5. The Elements of working with graphics
- •5.1 The graphics functions.
- •Working with brushes
- •5.2 The mapping modes and output regions
- •6. Common control elements
- •Windows Common Controls
- •6.2 The toolbar using
- •On resizing, the message wm_size is sent and the standard handler OnSize() is called.
- •The working with Spins
- •The working with slider
- •To set the range (minimum and maximum positions) for the slider in a slider control use the following function:
- •The working with progress bar
- •The tree control using in mfc programs
- •Adding elements to the tree
- •The status bars usage
- •Bool cStatusBarCtrl::SetParts( int nParts, int* pWidths );
- •Tab controls using in mfc-programs
- •Int cTabCtrl::GetCurSel(); To Selects a tab in a tab control use SetCurSel() function:
- •Int cTabCtrl::SetCurSel( int nItem );
- •The property sheets and wizards
- •7. Thread multitasking and it’s implementation in mfc
- •7.1 The basic features of multitasking
- •7.2 The Synchronization
- •7.3 The working with semaphore
- •7. 4 The working with event object
- •8. The concept of Document view
- •8.1 Introduction to document conception
- •The control of documents storing
- •8.2 The dynamic creation of objects
- •The application framework creation
- •The main window and application classes creation
- •Listing 8.1 The example of main window class in Document / View concept
- •Listing 8.2 The example of document class in Document / View concept
- •8.3 The document framework creation
- •8.4 The initiation of application
- •8.5 The standard id’s, used in Document / View concept
- •9. The special types of menu and their implementation in mfc
- •9.1 The description of special menu styles
- •The mechanism to make changes in menus
- •9.2 The dynamic and floating menus implementation
- •CMenu::CreatePopupMenu
- •The example programs to work with dynamic menus
- •10. The system of help
- •10.1 The basic information on help structures
- •The call of help
- •The file of help
- •The Help file creating
- •The example of rtf file
- •10.2 The Help system including to the mfc-program
- •Parameters:
- •Return Values: If the function succeeds, the return value is nonzero. If the function fails, the return value is zero.
- •10.3 The handlers of help messages
- •The processing of help calls
- •Wm_commandhelp message processing
- •10.4 Wm_contextmenu message processing
- •11. Manipulating Device-Independent Bitmaps
- •11.1 The types of bitmap
- •11.2 The structures included to bitmap
- •Introducing the cDib Class
- •11.3 Programming the cDib Class
- •Loading a dib into Memory
- •Other cDib Member Functions
- •Creating ShowDib program
- •Modifying ShowDib's Resources
- •Adding Code to ShowDib
- •Examining the OnFileOpen() Function
- •Examining the OnDraw() Function
- •12. The elements of Database Programming
- •12.1 Understanding Database Concepts
- •Accessing a Database
- •12.2 Mfc odbc Classes
- •Registering the Database
- •Creating the Basic Employee Application
- •Creating the Database Display
- •Adding and Deleting Records
- •12.4 Sorting and Filtering
- •12.5 Odbc versus dao
- •13. Remote Automation
- •13.1 The introduction to Remote Automation
- •13.2 The Remote Automation Connection Manager and user components
- •13.3 Automation
- •Automation Clients
- •13.4 ActiveX
- •ActiveX Document Servers
- •ActiveX Document Containers
- •ActiveX Document Views
- •13.5 ActiveX Documents
- •ActiveX Controls
- •Interaction Between Controls with Windows and ActiveX Control Containers
- •13.6 Optimization of ActiveX Controls
- •13.7 Automation Servers
- •13.8 Connection Points
- •14. Microsoft DirectX and the main items of its using
- •14.2 The Component Object Model
- •IUnknown Interface
- •DirectX com Interfaces
- •DirectDraw Architecture
- •Other DirectDraw Features
- •Width and Pitch
- •14.5 Support for 3d Surfaces in DirectX
- •14.6 Direct3d Integration with DirectDraw
- •Direct3d Device Interface
- •Direct3d Texture Interface
- •The Basics of DirectDraw
- •Step 6: Writing to the Surface.The first half of the wm_timer message in ddex1 is devoted to writing to the back buffer, as shown in the following example:
- •Loading Bitmaps on the Back Buffer
- •Step 1: Creating the Palette. The ddex2 sample first loads the palette into a structure by using the following code:
- •Step 4: Flipping the Surfaces. Flipping surfaces in the ddex2 sample is essentially the same process as that in the first example. Blitting from an Off-Screen Surface
- •Step 1: Creating the Off-Screen Surfaces. The following code is added to the doInit function in ddex3 to create the two off-screen buffers:
- •Color Keys and Bitmap Animation
- •Dynamically Modifying Palettes
- •Optimizations and Customizations
- •Blitting with Color Fill
- •Determining the Capabilities of the Display Hardware
- •Storing Bitmaps in Display Memory
- •Triple Buffering
- •15. General information on OpenGl
- •15.1 Common information
- •Primitives and Commands
- •OpenGl Graphic Control
- •Execution Model
- •15.2 Basic OpenGl Operation
- •OpenGl Correctness Tips
- •15.3 OpenGl example program
- •Ph.D. Assosiate prof. Tsimbal Alexander m. System software, summary of lectures.
13.3 Automation
Automation is available to both OLE objects and to ActiveX objects. For background, see the Overview. There are two categories of automation:
Automation (locally)
Remote Automation (over a network, using Distributed COM, or DCOM)
The remainder of this article concerns Automation. For Remote Automation, see the topic Remote Automation.
An Automation client is an application that can manipulate exposed objects belonging to another application. This is also called an Automation controller.
An Automation server is an application that exposes programmable objects to other applications. This is sometimes also called an "Automation component."
The server application exposes Automation objects. These Automation objects have properties and methods as their external interface. Properties are named attributes of the Automation object. Properties are like the data members of a C++ class. Methods are functions that work on an Automation object. Methods are like the public member functions of a C++ class.
Note Properties can have member functions that access them. A Get/Set function pair typically accesses a property of the object.
Passing Parameters in Automation
One of the difficulties in creating Automation methods is providing a uniform "safe" mechanism to pass data between automation servers and clients. Automation uses the VARIANT type to pass data. The VARIANT type is a tagged union. It has a data member for the value (this is an anonymous C++ union) and a data member indicating the type of information stored in the union. The VARIANT type supports a number of standard data types: 2- and 4-byte integers, 4- and 8-byte floating point numbers, strings, and Boolean values. In addition, it supports the HRESULT (OLE error codes), CURRENCY (a fixed-point numeric type), and DATE (absolute date and time) types, as well as pointers to IUnknown and IDispatch interfaces.
The VARIANT type is encapsulated in the COleVariant class. The supporting CURRENCY and DATE classes are encapsulated in the COleCurrency and COleDateTime classes.
Automation Clients
Automation makes it possible for your application to manipulate objects implemented in another application, or to expose objects so they can be manipulated. An automation client is an application that can manipulate exposed objects belonging to another application. The application that exposes the objects is called the Automation server. The client manipulates the server application's objects by accessing those objects' properties and functions.
There are two types of Automation clients:
Clients that dynamically (at run time) acquire information about the properties and operations of the server.
Clients that possess static information (provided at compile time) that specifies the properties and operations of the server.
Clients of the first kind acquire information about the server's methods and properties by querying the OLE system's IDispatch mechanism. Although it is adequate to use for dynamic clients, IDispatch is difficult to use for static clients, where the objects being driven must be known at compile time. For static bound clients, the Microsoft Foundation classes provide the COleDispatchDriver class along with ClassWizard support.
Static bound clients use a proxy class that is statically linked with the client application. This class provides a type-safe C++ encapsulation of the server application's properties and operations.
The class COleDispatchDriver provides the principal support for the client side of Automation. Using ClassWizard, you create a class derived from COleDispatchDriver.
You then specify the type-library file describing the properties and functions of the server application's object. ClassWizard reads this file and creates the COleDispatchDriver-derived class, with member functions that your application can call to access the server application's objects in C++ in a type-safe manner. Additional functionality inherited from COleDispatchDriver simplifies the process of calling the proper Automation server.