Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Инженерная графика.учебное пособие. Часть I.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
13.16 Mб
Скачать

Практическая работа № 13

Метод проекций

Способы проецирования

Ортогональное проецирование

Теоретические свойства построения чертежа в инженерной графике базируются на правилах построения изображений, основанных на методе проекций. Изображение объектов трехмерного пространства на плоскости получают методом проецирования.

Проецирование – это процесс, в результате которого получают изображения, представляющие собой проекции на плоскости.

А ппарат проецирования включает в себя изображаемые объекты – точки А, В, проецирующие лучи i и плоскость проекции п', на которой получается изображение объектов. Процесс проецирования заключается в проведении проецирующих лучей через заданные точки до встречи с плоскостью проекций. Точка пересечения проецирующего луча с плоскостью проекций и определяет проекцию этой точки. Так, проекцией точки А является точка А', т. е. [i ~ A; i ^ п' = А']. Проекцией точки В является точка В', хотя проекция точки В, лежащей в плоскости п', совпала с самой точкой. Чтобы получить проекцию какой-либо фигуры, необходимо построить проекции ее характерных точек и соединить их на чертеже соответствующими линиями.

В основу построения объекта на плоскости положен метод проекций. Проецирование – это построение объекта на плоскости при помощи проецирующих лучей, исходящих из точки. Плоскость, на которую падают лучи – проецирующая плоскость.

Способы проецирования

I. Центральное проецирование – проецирующие лучи выходят из одной точки (центра). Размеры предмета на плоскости проекций искажаются (рис.1).

II. Параллельное проецирование – проецирующие лучи параллельны и составляют с плоскостью угол 90 градусов (прямоугольное проецирование или ортогональное рис.2) и угол отличный от 90 градусов (косоугольное проецирование рис.3).

Аппарат проецирования включает в себя: Пi — плоскость проекций, S — центр проецирования, А — объект проецирования (точка), SA — проецирующую прямую, Ai — проекцию точки А.

Ортогональное проецирование- это частный случай параллельного проецирования. При ортогональном проецировании проецирующие лучи перпендикулярны к плоскости проекций.

Аппарат такого проецирования состоит из одной плоскости проекций.

Чтобы получить ортогональную проекцию точки А, через неё надо провести проецирующий луч перпендикулярно к П1. Точка А1 называется ортогональной или прямоугольной проекцией точки А.

Чтобы получить ортогональную проекцию А1В1 отрезка АВ, на плоскость П1, необходимо через точки А и В провести проецирующие прямые, перпендикулярные П1. При пересечении проецирующих прямых с плоскостью П1 получатся ортогональные проекции А1 и В1 точек А и В. Соединив ортогональные проекции А1 и В1 получим ортогональную проекцию А1В1 отрезка АВ.

Все свойства параллельного проецирования выполнимы и для ортогонального проецирования. Однако ортогональные проекции обладают ещё некоторыми свойствами.

Свойство ортогонального проецирования: Для ортогонального проецирования будет справедлива теорема о проецировании прямого угла:

Теорема:  Если хотя бы одна сторона прямого угла параллельна плоскости проекций, а вторая ей не перпендикулярна, то угол на эту плоскость проецируется в натуральную величину.

Доказательство:

Дан прямой угол АВС, у которого по условию прямая ВС  перепендикулярна АВ и ВС || плоскости проекций П1. По построению прямая ВС  к проецирующему лучу ВВ1. Следовательно, прямая ВС  к плоскости (АВхВВ1), т. к. она  к двум пересекающимся прямым , лежащим в этой плоскости. По условию прямая В1С1 || ВС, поэтому тоже  к плоскости , т. е. и прямой А1В1 этой плоскости. Следовательно, угол между прямыми А1В1 и В1С1 равен 90°, что и требовалось доказать.

Ортогональное проецирование обеспечивает простоту геометрических построений при определении ортогональных проекций точек, а так же возможность сохранять на проекциях форму и размеры проецируемой фигуры. Эти достоинства обеспечили ортогональному проецированию широкое применение в техническом черчении.

Рассмотренные методы проецирования позволяют решить прямую задачу начертательной геометрии, т. е. по оригиналу построить плоский чертёж. Полученные таким образом проекции на одну плоскость дают неполное представление о предмете, его форме и положении в пространстве, т. е. такой чертёж не обладает свойством обратимости.

Чтобы получить обратимый чертеж, т.е. чертеж дающий полное представление о форме, размерах и положении оригинала в пространстве, однокартинный чертеж дополняют. В зависимости от дополнения существуют различные виды чертежей.

В промышленности весьма широко используются так назы­ваемые плоские детали (пластины, уголки, прокладки, решетки, лекала швейного и обувного производств и т. д.), имеющие про­стую или сложную конфигурацию при незначительной толщине самих деталей (рис 1). Для отображения их на чертеже доста­точно построения одной проекции.

Рис. 1. Плоские детали: а — «Пластины»; б — «Уголок», в — «Про­кладки»; г — «Решетки»

При прямоугольном проецировании на од­ну плоскость проекций деталь следует расположить таким образом, чтобы полученное изображение давало наибольшую инфор­мацию о ее форме (рис. 2).

Рис. 2. Расположение детали относительно плоскости проекций: а — правильное расположение; б — неправильное расположение; в — про­цесс и результат проецирования

Выберем для получения изображения вертикальную (фрон­тальную) плоскость проекций (К). Перед ней мысленно располо­жим деталь «Уголок» (рис. 2, в) так, чтобы формообразующая грань стала параллельно плоскости проекций. В результате прямоугольного (ортогонального) проецирования получим изо­бражение детали, на котором грани предмета, параллельные плоскости проекций, отобразятся в натуральную величину. Боко­вые грани, перпендикулярные плоскости проекций, спроецируются в отрезки прямых. Ребра, параллельные фронтальной плоскости проекций, изобразятся в натуральную величину, а ребра, перпендикулярные ей, — в точки.

Цилиндрические отвер­стия «Уголка» спроецируются в виде окружностей. Полученное изображение называется фронтальной проекцией. Эта проекция содержит основную информацию о форме детали, воспроизводит ее контур, дает представление о высоте и длине, не передавая при этом толщину или ширину.