- •История возникновения и развития ос
- •Основные версии unix.
- •Основные версии ос Windows
- •Установка unix-подобной ос Краткие сведения по установке Unix-подобных систем (на примере FreeBsd)
- •Установка ос Windows.
- •Ядро и вспомогательные модули ос
- •Ядро в привилегированном режиме
- •Микроядерная архитектура
- •Многослойная структура ос
- •Физическая память и виртуальное адресное пространство.
- •Виртуальное адресное пространство процесса
- •9.Способы доступа к памяти в защищенном режиме.
- •10. Многозадачность ос
- •11. Динамически подключаемая библиоте
- •Формат файлов dll придерживается тех же соглашений, что и формат исполняемых файлов, сочетая код, таблицы и ресурсы, отличаясь лишь интерпретацией некоторых полей. Цели введения
- •12) Файловая подсистема ос.
- •13) Типы файлов.
- •14) Блочные и символьные устройства
- •15) Файлы, проецируемые в память
- •16) Сокеты
- •17) Корневой каталог.
- •18) Права доступа к файлам в ос.
- •Возможные действия над файлом
- •Указание прав доступа с помощью буквенной нотации
- •Указание прав доступа с помощью числовой нотации
- •19. Системные процессы ос.
- •20. Прикладные процессы ос
- •21. Взаимодействие между процессами.
- •22. Сигналы межпроцессного взаимодействия
- •23. Алармымежпроцессного взаимодействия.
- •24. Каналы fifOмежпроцессного взаимодействия.
- •25. Сообщения межпроцессного взаимодействия.
- •Семафоры межпроцессорного взаимодействия. Семафоры
- •Командный интерпретатор ос.
- •Программирования на языке командного интерпретатора ос.
- •Команда в общем виде:
- •Цикл for
- •Операторы цикла while и until
- •Переменные в скриптах командного интерпретатора ос.
- •Перенаправление ввода/вывода командного интерпретатора ос.
- •Команды more и sort
- •Ветвления в скриптах командного интерпретатора ос. Оператор выбора
- •Условный оператор
- •Циклы в скриптах командного интерпретатора ос.
- •Цикл for
- •Операторы цикла while и until
- •33. Настройка локальной сети.
- •34. Протоколы tcp/ip сети.
- •35. Служба доменных имен.
- •36.Сетевая файловая система.
- •37. Методы управления локальной сетью.
- •38. Методы настройки служб ос.
- •39. Методы управления учетными записями пользователей ос.
- •Сервис печати ос.
- •Методы повышения отказоустойчивости ос.
- •Методы диагностики процесса загрузки ос.
- •Методы диагностики текущего состояния ос.
- •Актуальность защиты операционной системы.
- •Виды атак на ос.
- •Способы защиты ос от типовых атак.
Многослойная структура ос
Вычислительную систему, работающую под управлением ОС на основе ядра, можно рассматривать как систему, состоящую из трех иерархически расположенных слоев: нижний слой образует аппаратура, промежуточный — ядро, а утилиты, обрабатывающие программы и приложения, составляют верхний слой системы (рис. 6). Слоистую структуру вычислительной системы принято изображать в виде системы концентрических окружностей, иллюстрируя тот факт, что каждый слой может взаимодействовать только со смежными слоями. Действительно, при такой организации ОС приложения не могут непосредственно взаимодействовать с аппаратурой, а только через слой ядра.
В соответствии с этим подходом система состоит из иерархии слоев. Каждый слой обслуживает вышележащий слой, выполняя для него некоторый набор функций, которые образуют межслойный интерфейс.
Такая организация системы имеет много достоинств:
– она существенно упрощает разработку системы,
– позволяет при детальной реализации постепенно наращивать мощность функций слоев, двигаясь «снизу вверх».
– при модернизации системы можно изменять модули внутри слоя без необходимости производить какие-либо изменения в остальных слоях
Поскольку ядро представляет собой сложный многофункциональный комплекс, то многослойный подход обычно распространяется и на структуру ядра.
Ядро может состоять из следующих слоев
1. Средства аппаратной поддержки ОС. До сих пор об операционной системе говорилось как о комплексе программ, тем не менее, часть функций ОС может выполняться и аппаратными средствами. К операционной системе относят, не все аппаратные устройства компьютера, а только средства аппаратной поддержки ОС, то есть те, которые прямо участвуют в организации вычислительных процессов: средства поддержки привилегированного режима, систему прерываний, средства переключения контекстов процессов, средства защиты областей памяти и т. п.
2. Машинно-зависимые компоненты ОС. Этот слой образуют программные модули, в которых отражается специфика аппаратной платформы компьютера. Это позволяет разрабатывать вышележащие слои на основе машинно-независимых модулей, существующих в единственном экземпляре для всех типов аппаратных платформ, поддерживаемых данной ОС. В идеале этот слой полностью экранирует вышележащие слои ядра от особенностей аппаратуры. Примером экранирующего слоя может служить слой HAL операционной системы Windows NT. Так HAL (Hardware AbstractionLayer) динамически загружаемая библиотека (DLL) позволяет исполняющей системе Windows NT функционировать на аппаратных платформах разных поставщиков, что обеспечивает максимальную переносимость данной ОС. HAL в Windows NT является абстрагирующим слоем, т.е. своеобразной VM над аппаратными средствами компьютера. Таким образом, ОС пишется один раз, а выполняется на различных аппаратных платформах, переписывается сравнительно небольшая часть – слой аппаратных абстракций HAL.
В идеале слой машинно-зависимых компонентов ядра полностью экранирует остальную часть ОС от конкретных деталей аппаратной платформы (кэши, контроллеры прерываний ввода-вывода и т. п.).по крайней мере для того набора платформ, который поддерживает данная ОС. В результате происходит подмена реальной аппаратуры некой унифицированной виртуальной машиной, одинаковой для всех вариантов аппаратной платформы. Все слои операционной системы, которые лежат выше слоя машинно-зависимых компонентов, могут быть написаны для управления именно этой виртуальной аппаратурой. Таким образом, у разработчиков появляется возможность создавать один вариант машинно-независимой части ОС (включая компоненты ядра, утилиты, системные обрабатывающие программы) для всего набора поддерживаемых платформ.
3. Базовые механизмы ядра. Этот слой выполняет наиболее примитивные операции ядра, такие как программное переключение контекстов процессов, диспетчеризацию прерываний, перемещение страниц из памяти на диск и обратно и т. п. Например, решение о том, что в данный момент нужно прервать выполнение текущего процесса А и начать выполнение процесса В, принимается менеджером процессов на вышележащем слое, а слою базовых механизмов передается только директива о том, что нужно выполнить переключение с контекста текущего процесса на контекст процесса В.
4. Менеджеры ресурсов. Этот слой состоит из мощных функциональных модулей, реализующих стратегические задачи по управлению основными ресурсами вычислительной системы. Обычно на данном слое работают менеджеры (называемые также диспетчерами) процессов, ввода-вывода, файловой системы и оперативной памяти. Каждый из менеджеров ведет учет свободных и используемых ресурсов определенного типа и планирует их распределение в соответствии с запросами приложений. Для исполнения принятых решений менеджер обращается к нижележащему слою базовых механизмов с запросами о загрузке (выгрузке) конкретных страниц. Внутри слоя менеджеров существуют тесные взаимные связи, отражающие тот факт, что для выполнения процессу нужен доступ одновременно к нескольким ресурсам — процессору, области памяти, возможно, к определенному файлу или устройству ввода-вывода.
5. Интерфейс системных вызовов. Этот слой является самым верхним слоем ядра и взаимодействует непосредственно с приложениями и системными утилитами, образуя прикладной программный интерфейс операционной системы, функции API, обслуживающие системные вызовы, предоставляют доступ к ресурсам системы в удобной и компактной форме, без указания деталей их физического расположения.
Приведенное разбиение ядра ОС на слои является достаточно условным. В реальной системе количество слоев и распределение функций между ними может быть и иным.
