Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛЕКЦИИ по ЭВМ.doc
Скачиваний:
0
Добавлен:
16.02.2020
Размер:
4.38 Mб
Скачать

6. Приложения.

6.1. Образец решения контрольных задач типового варианта.

1.1 – 30. Вычислить определитель:

а) непосредственным разложением по строке;

б) непосредственным разложением по столбцу;

Решение. а) вычисляем определитель разложением по элементам первой строки: = .

Тогда = =

б) вычисляем определитель непосредственным разложением по элементам второго столбца: = .

Тогда = = .

Ответ: .

2.1-30. а) Найти матрицу , если:

, .

Решение:

1) Транспонируем матрицу : .

2) Вычисляем произведение матриц :

.

3) Находим матрицу :

.

4) Находим матрицу :

.

Ответ: .

3.1 – 30. Дана система уравнений: . Требуется:

а) найти решение системы методом Крамера; б) записать систему в матричном виде и найти её решение методом обратной матрицы; в) найти решение системы методом Гаусса.

Решение.

А) Метод Крамера.

1а) Вычисляем определитель системы и проверяем, что он отличен от нуля:

.

2а) Так как , то система имеет единственное решение, определяемое формулами Крамера:

3а) Вычисляем определители :

,

,

.

4а) Находим решение: .

5а) Выполняем проверку: .

Ответ: .

Б) Метод обратной матрицы.

1б) Записываем систему уравнений в матричном виде:

или

2б) Вычисляем определитель системы и проверяем, что он отличен от нуля:

3б) Так как , то матрица системы имеет обратную матрицу и единственное решение системы определяется формулой:

или

4б) Находим обратную матрицу (методом присоединённой матрицы):

.

Тогда .

5б) Находим решение:

.

6б) Выполняем проверку: .

Ответ: .

В) Метод Гаусса.

1в) Записываем расширенную матрицу системы:

.

2в) Выполняем прямой ход метода Гаусса.

В результате прямого хода матрица системы должна быть преобразована с помощью элементарных преобразований строк к матрице треугольного или трапециевидного вида с элементами . Система уравнений, матрица которой является треугольной с элементами , имеет единственное решение, а система уравнений, матрица которой является трапециевидной с элементами , имеет бесконечно много решений.

. В результате элементарных преобразований матрица системы преобразована к специальному виду . Система уравнений, матрица которой , является треугольной с ненулевыми диагональными элементами , имеет всегда единственное решение, которое находим, выполняя обратный ход.

Замечание. Если при выполнение преобразования расширенной матрицы в преобразованной матрице появляется строка , где , то это говорит о несовместности исходной системы уравнений.

3в) Выполняем обратный ход метода Гаусса.

Записываем систему уравнений, соответствующую последней расширенной матрице прямого хода: и последовательно из уравнений системы, начиная с последнего, находим значения всех неизвестных: .

4в) Выполняем проверку: .

Ответ: .

4.1-30. Найти общее решение для каждой из данных систем методом Гаусса:

а) .

Решение.

1а) Записываем расширенную матрицу системы:

.

2а) Выполняем прямой ход метода Гаусса.

.

Матрица системы приведена к трапециевидному виду с ненулевыми диагональными элементами. Соответствующая такой матрице система уравнений имеет бесконечно много решений, которые находим, выполняя обратный ход, и записываем в виде общего решения. Для записи общего решения указываем её базисные и свободные неизвестные. Базисный минор матрицы системы образуют столбцы коэффициентов при неизвестных и : . Поэтому выбираем в качестве базисных – неизвестные и , тогда свободными будут неизвестные и .

3а) Выполняем обратный ход метода Гаусса.

Записываем систему уравнений, соответствующую последней расширенной матрице прямого хода: . Свободным неизвестным придаём разные, произвольные постоянные значения: , , и последовательно из уравнений системы, начиная с последнего, находим значения всех базисных неизвестных: .

Тогда общее решение системы запишется в виде: .