- •Основные понятия и определения.
- •3. Составные элементы грунтов
- •4.Твердые минеральные частицы. Гранулометрический состав грунтов.
- •5. Вода в грунтах, её виды и свойства.
- •6. Газообразная фаза в грунтах.
- •7. Структура и текстура грунтов.
- •8. Структурные связи в грунтах.
- •9. Основные физические характеристики грунтов. Методы их определения.
- •10. Производные характеристики грунтов.
- •11. Пластичность пылевато-глинистых грунтов.
- •12. Оптимальная влажность грунтов.
- •13.Основные закономерности механики грунтов.
- •14.Сжимаемость грунтов. Компрессионная зависимость. Закон уплотнения.
- •15.Структурная прочность грунта.
- •16.Методы определения модуля деформации грунта.
- •17. Закон ламинарной фильтрации для различных грунтов.
- •18. Эффективные и нейтральные давления.
- •19. Сопротивление грунтов сдвигу. Закон Кулона.
- •20. Испытания грунтов в приборах трехосного сжатия.
- •21. Определение напряжения в грунте от действия вертикальной сосредоточенной силы.
- •22. Действие нескольких сосредоточенных сил.
- •23.Действие любой распределенной нагрузки.
- •24.Метод угловых точек.
- •25. Определение напряжений в массиве грунта при плоской задаче.
- •27. Напряжения от собственного веса грунта.
- •29. Критические нагрузки на грунт основания
- •30.Предельная нагрузка на грунт
- •30.Метод круглоцилиндрических поверхностей скольжения
- •32. Понятие об активном давлении и пассивном отпоре грунта и о поверхностях скольжения
- •2. Учет равномерно распределенной нагрузки, приложенной к поверхности грунта.
- •3. Определение давления связного грунта (φ≠ 0 и с ≠0) на вертикальную абсолютно гладкую подпорную стенку при горизонтальной засыпке.
- •33 Уравнения предельного равновесия:
- •42. Метод эквивалентного слоя.
- •43. Метод линейно деформированного слоя конечной толщины.
- •45. Новые типы фундаментов
- •46. Область применения свайных фундаментов. Классификация свай и свайных фундаментов.
- •47. Определение несущей способности свай по теоретическим формулам.
- •49. Испытание свай статической нагрузкой
- •50. Другие методы определения несущей способности сваи
- •51. Особенности проектирования свайных фундаментов. Назначение размеров ростверка
- •52. Определение фактического давления на сваю
- •61. Устойчивость грунтов в откосах
- •63 . Фундаменты из тонкостенных оболочек,буровых опор:
- •64. Особенности погружения опускных колодцев в грунт
- •71. Набухающие грунты. Ленточные глины
- •69. Торфы и заторфованные грунты. Особенности строительства зданий
- •72. Особенности строительства на подрабатываемых территориях
47. Определение несущей способности свай по теоретическим формулам.
Определение несущей способности свай-стоек
Несущая способность сваи-стойки зависит от прочности грунта под ее нижним концом и определяется по первой группе предельных состояний по формуле
где yc — коэффициент условий работы, принимаемый равным 1; R — расчетное сопротивление крупнообломочного грунта или скальной породы под нижним концом сваи; А — площадь поперечного сечения сваи у нижнего конца.
Под
набивными сваями вскрываемый плотный
пылевато-глинистый или крупнообломочный
грунт разуплотняется, поэтому нормативное
сопротивление такого грунта можно
установить лишь путем испытания его
штампами или загрузкой свай статической
нагрузкой. Если нижний конец набивной
сваи опирается на невыветрелую
скальную породу, расчетное сопротивление
ее под сваей устанавливается по формуле
где Rс. n — нормативное (среднее арифметическое значение) временное сопротивление скальной породы одноосному сжатию в водонасыщеииом состоянии; yg — коэффициент надежности по грунту, принимаемый равным 1,4.
Для повышения значения R приходится заделывать нижний конец сваи в скальную породу. Тогда
где
ld
—
расчетная глубина заделки набивной
сваи или сваи-оболочки в скальную
породу, принимаемая не менее 0,5 м; df
—
диаметр заделанной в скальную породу
части сваи.
Определение несущей способности сваи трения
Несущая способность грунта основания свай трения, зависящая от сопротивления грунта под их нижним концом давлению и развивающегося по их боковой поверхности сопротивления грунта сдвигу, определяется по I группе предельных состояний различными методами. Широко известны следующие четыре метода: 1) практический с использованием таблиц СНиПа; 2) динамический; 3) статического зондирования; 4) испытания свай статической нагрузкой. Из них только последний метод позволяет получать непосредственно опытным путем значение несущей способности сваи. Остальные методы, являясь косвенными, дают относительно приближенные значения несущей способности, которые рекомендуется сравнивать с результатами контрольных испытаний свай статической нагрузкой.
Практический метод. Несущая способность свай трения определяется как сумма двух слагаемых — сопротивления грунта под их нижним концом давлению и сопротивления грунта сдвигу по их боковой поверхности:
где ус — коэффициент условий работы сваи в грунте, принимаемый равным 1; y сR и Yсf — коэффициенты условий работы грунта соответственно под нижним концом и по боковой поверхности сваи, зависящие от способа ее погружения ; R — расчетное сопротивление грунта под нижним концом сваи, определяемое по табл.; А — площадь опирания сваи на грунт; ц — периметр поперечного сечения сваи; fi — расчетное сопротивление сдвигу боковой поверхности сваи по i-му слою грунта, определяемое по табл.; hi — толщина i-ro слоя грунта в пределах длины сваи.
Глубины погружения сваи и залегания отдельных слоев z для определения значений R и fi принимают от природного рельефа при срезке, подсыпке или намыве слоя толщиной не более 3 м или от условной отметки, расположенной соответственно на 3 м выше уровня срезки или на 3 м ниже уровня подсыпки.
При промежуточных значениях z для определения R и fi по табл. применяют интерполяцию. Толщину слоев при членении толщи грунтов для определения fi принимают не более 2 м.
48/Динамический метод. Чем глубже погружается свая, забиваемая свайным молотом, тем больше сопротивление оказывает грунт ее внедрению. В результате от каждого удара получается все меньший и меньший отказ, который следует определять после «отдыха».
Динамические испытания свай после «отдыха» регламентированы ГОСТ 5686—78 и СНиП 2.02.03—85. Добивку свай после «отдыха» производят свайным молотом массой в 1,5...1,25 раза больше массы сваи, а при длинных сваях — молотом с массой не менее массы испытываемой сваи.
Рис. 11.12. Расчетная схема к определению несущей способности сваи трения
QH = Fusa + Gh +GH a,
где fu —' предельное сопротивление сваи погружению в грунт; sa — отказ сваи после «отдыха»; H — высота отскока свайного молота после удара, зависящая от упругих деформаций системы молот — свая — грунт; а — коэффициент, характеризующий потери работы на разрушение головы сваи и Другие потери.
В результате принятия ряда допущений и преобразования этого выражения Н. М. Герсеванов получил формулу для предельного сопротивления сваи, которая снебольшими изменения- ми приводится в СНиП для отказов свай sa0,002 м в сле дующем виде:
При малых значениях отказа (sa < 0,002 м) необходимо учитывать упругие деформации системы свая — грунт. Для этого с помощью отказомера замеряют упругий отказ sei и остаточный отказ sa. Это позволяет определить частное значение предельного сопротивления сваи по формуле
Точность определения Fu по формулам зависит от наличия упругой прокладки в наголовнике, которая должна быть предварительно обмята несколькими ударами той же интенсивности, что и при определении отказа сваи.
Недостатком динамических испытаний является необходимость перехода от сопротивления сваи динамическому погружению к сопротивлению ее под действием статической нагрузки.
