Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-25,27,29-33,42-52,57-64,69-72 ,41 !.doc
Скачиваний:
3
Добавлен:
01.05.2025
Размер:
3.08 Mб
Скачать

47. Определение несущей способности свай по теоретическим формулам.

Определение несущей способности свай-стоек

Несущая способность сваи-стойки зависит от прочности грунта под ее нижним концом и определяется по первой группе предельных состояний по формуле

где yc — коэффициент условий работы, принимаемый равным 1; R — расчет­ное сопротивление крупнообломочного грунта или скальной породы под ниж­ним концом сваи; А — площадь поперечного сечения сваи у нижнего конца.

Под набивными сваями вскрываемый плотный пылевато-глинистый или крупнообломочный грунт разуплотняется, поэтому нормативное сопротивление такого грунта можно установить лишь путем испытания его штампами или загрузкой свай ста­тической нагрузкой. Если нижний конец набивной сваи опирает­ся на невыветрелую скальную породу, расчетное сопротивление ее под сваей устанавливается по формуле

где Rс. n — нормативное (среднее арифметическое значение) временное со­противление скальной породы одноосному сжатию в водонасыщеииом со­стоянии; yg — коэффициент надежности по грунту, принимаемый равным 1,4.

Для повышения значения R приходится заделывать нижний конец сваи в скальную породу. Тогда

где ld — расчетная глубина заделки набивной сваи или сваи-оболочки в скальную породу, принимаемая не менее 0,5 м; df — диаметр заделанной в скальную породу части сваи.

Определение несущей способности сваи трения

Несущая способность грунта основания свай трения, за­висящая от сопротивления грунта под их нижним концом давле­нию и развивающегося по их боковой поверхности сопротивле­ния грунта сдвигу, определяется по I группе предельных состоя­ний различными методами. Широко известны следующие четыре метода: 1) практический с использованием таблиц СНиПа; 2) динамический; 3) статического зондирования; 4) испытания свай статической нагрузкой. Из них только последний метод по­зволяет получать непосредственно опытным путем значение не­сущей способности сваи. Остальные методы, являясь косвенны­ми, дают относительно приближенные значения несущей способ­ности, которые рекомендуется сравнивать с результатами кон­трольных испытаний свай статической нагрузкой.

Практический метод. Несущая способность свай трения опре­деляется как сумма двух слагаемых — сопротивления грунта под их нижним концом давлению и сопротивления грунта сдви­гу по их боковой поверхности:

где ус — коэффициент условий работы сваи в грунте, принимаемый равным 1; y сR и Yсf — коэффициенты условий работы грунта соответственно под ниж­ним концом и по боковой поверхности сваи, зависящие от способа ее погру­жения ; R — расчетное сопротивление грунта под нижним кон­цом сваи, определяемое по табл.; А — площадь опирания сваи на грунт; ц — периметр поперечного сечения сваи; fi — расчетное сопротивление сдвигу боковой поверхности сваи по i-му слою грунта, определяемое по табл.; hi — толщина i-ro слоя грунта в пределах длины сваи.

Глубины погружения сваи и залегания отдельных слоев z для определения значений R и fi принимают от природного рельефа при срезке, подсыпке или намыве слоя толщиной не более 3 м или от условной отметки, расположенной соответ­ственно на 3 м выше уровня срезки или на 3 м ниже уровня подсыпки.

При промежуточных значениях z для определения R и fi по табл. применяют интерполяцию. Толщину слоев при членении толщи грунтов для опре­деления fi принимают не более 2 м.

48/Динамический метод. Чем глуб­же погружается свая, забиваемая свайным молотом, тем больше со­противление оказывает грунт ее внедрению. В результате от каждо­го удара получается все меньший и меньший отказ, который следует определять после «отдыха».

Динамические испытания свай после «отдыха» регламентированы ГОСТ 5686—78 и СНиП 2.02.03—85. Добивку свай после «отдыха» про­изводят свайным молотом массой в 1,5...1,25 раза больше массы сваи, а при длинных сваях — молотом с массой не менее массы испы­тываемой сваи.

Рис. 11.12. Расчетная схема к определению несущей способности сваи трения

Работа, совершаемая при ударе свайного молота о голову сваи, GH (где G — масса ударной части молота; H — высота его падения) расходуется на погружение сваи, на упругие деформа­ции системы молот — свая — грунт, частично на превращение механической энергии в тепловую и на разрушение головы сваи. В общем виде это положение записывается в виде урав­нения

QH = Fusa + Gh +GH a,

где fu —' предельное сопротивление сваи погружению в грунт; sa — отказ сваи после «отдыха»; H — высота отскока свайного молота после удара, за­висящая от упругих деформаций системы молот — свая — грунт; а — коэф­фициент, характеризующий потери работы на разрушение головы сваи и Другие потери.

В результате принятия ряда допущений и преобразования этого выражения Н. М. Герсеванов получил формулу для пре­дельного сопротивления сваи, которая снебольшими изменения- ми приводится в СНиП для отказов свай sa0,002 м в сле­ дующем виде:

При малых значениях отказа (sa < 0,002 м) необходимо учитывать упругие деформации системы свая — грунт. Для этого с помощью отказомера замеряют упругий отказ sei и оста­точный отказ sa. Это позволяет определить частное значение предельного сопротивления сваи по формуле

Точность определения Fu по формулам зави­сит от наличия упругой прокладки в наголовнике, которая должна быть предварительно обмята несколькими ударами той же интенсивности, что и при определении отказа сваи.

Недостатком динамических испытаний является необходи­мость перехода от сопротивления сваи динамическому погруже­нию к сопротивлению ее под действием статической нагрузки.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]