
- •Автоматизированное рабочее место. Его состав, функции, аппаратное и программное обеспечение.
- •Администрирование и мониторинг Windows nt/2000.
- •Адресация в сети Internеt.
- •Алгоритм. Свойства алгоритма. Способы описания алгоритма. Примеры.
- •Аппаратно – зависимые компоненты в ос.
- •Архитектура Windows nt/2000. Ядро и вспомогательные модули ос
- •Архитектура монитора обработки транзакций (схема и описание).
- •Архитектура эвм. Обобщенная структурная схема эвм (классическая).
- •Архитектуры файл – сервер и клиент – сервер локальных сетей.
- •Базовые классы vcl. Характеристика. Примеры.
- •Блокировка в sql Server 2000. Методы управления блокированием ресурсов.
- •Блокировки в sql Server 2000 (2003). Методы управления блокированием ресурсов.
- •Блочно – модульный принцип организации программ в языке Турбо Паскаль. Локальные и глобальные переменные. Примеры.
- •Виды совместимости ос.
- •Внешние устройства пк: диалоговые, запоминающие, телекоммуникационные.
- •Выполнение арифметических операций в двоичной, шестнадцатеричной системах счисления. Примеры
- •Двоичная арифметика. Примеры.
- •Дискретная модуляция аналоговых сигналов. Импульсно – кодовая модуляция.
- •Достоинства и недостатки объектно – ориентированного программирования.
- •Достоинства и недостатки объектно – ориентированной модели данных
- •Жизненный цикл программного обеспечения.
- •Иерархическая модель данных.
- •Иерархическая модель представления данных. Ее достоинства и недостатки.
- •Иерархическая структура памяти эвм: уровни иерархии, назначение зу различных типов.
- •Информатика как наука. Основные направления научных исследований в области информатики.
- •Информационное, аппаратное и программное обеспечение кс: структура и функции.
- •Информационные технологии автоматизированного офиса.
- •Информационные технологии обработки текстовых данных.
- •Использование распределенной файловой системы при работе с бд.
- •Использование триггеров в sql Server 2000.
- •Классификация и краткая характеристика языков программирования
- •Классификация и характеристики принтеров.
- •Классификация периферийных устройств ввода-вывода.
- •Классическая архитектура ос. Ядро и вспомогательные модули ос
- •Кодирование информации. Равномерные и неравномерные коды. Двоичное кодирование.
- •Коммутация каналов в сетях: сущность, оценка, область применения
- •Коммутация пакетов в сетях.
- •Компоненты sql Server 2000 (2003).
- •Компоненты интерфейсов Windows в Delphi.
- •Технологии fddi
- •Концепция виртуальной памяти.
- •Краткая характеристика простых типов данных в языке Турбо Паскаль. Основные функции обработки простых типов данных. Примеры.
- •Линии связи и их характеристики.
- •Логическая и физическая организация файловых систем.
- •Маршрутизация пакетов в сетях: методы маршрутизации, их характеристика и области применения.
- •Методы и средства защиты информации в ккс от несанкционированного доступа.
- •Механизм использования шаблонов в Delphi.
- •Микроядерная архитектура ос.
- •Многомашинные вычислительные системы.
- •Многопроцессорные вычислительные системы.
- •Модуль. Структура модуля в языке Турбо – Паскаль. Примеры.
- •Модуль. Структура модуля в языке Турбо – Паскаль. Примеры.
- •Название и характеристика кэш – памяти
- •Назначение и компоненты хранилища данных.
- •Назначение и роль ос в работе пк. Примеры.
- •Назначение и характеристики системы прерываний. Порядок обработки прерывания.
- •Назначение классов tPersistent и tComponent. Примеры.
- •Назначение центрального процессора (цп). Магистральный принцип передачи информации в цп, его преимущества и недостатки.
- •Назначение, состав и виды ос.
- •Нормальные формы, их назначение.
- •Обеспечение безопасности в Windows nt/2000.
- •Объект. Методы объектов в языке Турбо Паскаль.
- •Операции алгебры логики. Схемы, реализующие основные логические элементы эвм. Примеры.
- •Определение степени связи между сущностями при проектировании бд.
- •Организация ввода – вывода данных в Delphi.
- •Организация параллелизма вычислений в современных процессорах
- •Организация программ в языке Турбо Паскаль. Локальные и глобальные параметры. Примеры.
- •Организация списков в языке Турбо Паскаль. Примеры.
- •Организация циклов
- •Основная характеристика языков запроса бд.
- •Основные показатели оценки качества программы
- •Основные понятия метода проектирования бд, сущность – связь. Примеры.
- •Основные понятия эффективности функционирования кс
- •Основные свойства класса tControl. Примеры
- •Основные события, возникающие от клавиатуры в Delphi. Примеры
- •Операции над строками
- •Основные средства защиты в субд.
- •Основные средства защиты, встроенные в ос.
- •Основные средства разработки бд.
- •Основные структуры алгоритмов, примеры.
- •2. Алгоритмы разветвляющейся структуры
- •3. Алгоритмы циклической структуры
- •4. Алгоритмы со структурой вложенных циклов
- •5. Подчиненные алгоритмы
- •Основные структуры алгоритмов
- •2. Алгоритмы разветвляющейся структуры
- •3. Алгоритмы циклической структуры
- •4. Алгоритмы со структурой вложенных циклов
- •5. Подчиненные алгоритмы
- •Основные типы данных в Object Pascal.
- •Основные типы моделей данных.
- •Основные фунции микропроцессора. Характеристики микропроцессора.
- •Основные характеристики и особенности локальных компьютерных сетей (лкс).
- •Основные характеристики эвм.
- •Основные этапы разработки бд.
- •1. Разработка, утверждение тз и подборка под него готовых частей
- •2. Определение необходимых таблиц и связей между ними, полей таблиц и ключевых полей в бд
- •3. Проектирование интерфейса приложения
- •4. Тестирование, создание документации, сдача проекта и расчет
- •Основные этапы создания приложений в Delphi.
- •Особенности технологий Fast Ethernet и 100 vg'- AnyLan.
- •Перевод чисел из одной системы исчисления в другую (восьмеричная, десятичная, шестнадцатеричная система исчисления). Примеры
- •Передача дискретных данных на канальном уровне: используемые протоколы, способы связи между отправителем и получателем.
- •Передача дискретных данных на физическом уровне: цифровое кодирование и аналоговая модуляция.
- •Передача дискретных данных
- •Переносимость ос на разные аппаратные платформы.
- •Периферийные устройства пк.
- •Перспективы развития кс.
- •Перспективы развития телекоммуникаций в России.
- •Планирование и диспетчеризация потоков в процессе функционирования ос.
- •Подпрограммы – функции. Примеры.
- •Показатели целевой и экономической эффективности функционирования кс
- •Поколения эвм и их краткая характеристика.
- •Понятие «информационная культура». В чем она проявляется?
- •Понятие и классификация информационных технологий.
- •Понятие индекса. Использование индексирования в бд.
- •Понятие информации. Дискретная и аналоговая информация. Носители информации.
- •Понятие информационного общества. Характерные черты информационного общества.
- •Понятие мультипрограммирования. Способы управления процессом в режиме мультипрограммирования.
- •Понятие отношения. Условия, при которых таблицу можно считать отношением.
- •Понятие процесса и потока в ос.
- •Понятие процессов. Виды процессов.
- •Понятие распределенной бд, ее достоинства и недостатки.
- •Порты ввода – вывода: параллельный и последовательный.
- •Представление команд в эвм. Основные стадии выполнения команд.
- •Преимущества и недостатки микроядерной архитектуры ос
- •Прикладные сервисы Internet: электронная почта, телеконференции, почтовые списки, передача файлов.
- •Применение эвм в научных исследованиях, медицине, образовании.
- •Принципы объектно – ориентированного программирования.
- •Принципы построения глобальных компьютерных сетей (гкс).
- •Программы – функции. Вызов функции. Примеры.
- •Проектирование рекурсивных алгоритмов в языке Турбо – Паскаль. Пример.
- •Простые типы данных в языке Турбо Паскаль. Основные функции обработки простых типов данных. Примеры.
- •Процедуры. Формальные, фактические параметры. Примеры.
- •Прямой доступ к памяти
- •Пути совершенствования и развития телекоммуникаций в России
- •Распределение памяти при выполнении программ. Строчные переменные в языке Турбо Паскаль. Примеры.
- •Режимы передачи информации: сущность, оценка, области изменения.
- •Резервное копирование. Типы резервного копирования sql Server 2000.
- •Резервное копирование. Типы резервного копирования sql Server 2000 (2003).
- •Реляционная модель данных.
- •Ресурсы вычислительной системы. Управление ресурсами.
- •Рынок информационных продуктов и услуг. Инфраструктура информационного рынка.
- •Самосинхронизирующие коды: состав, характеристика, области применения.
- •Связывание таблиц в бд. Основные виды связей. Примеры
- •Сетевая модель данных.
- •Сетевое коммуникационное оборудование лкс: состав и назначение.
- •Сетевое оборудование ккс: состав и назначение.
- •Сетевые ос.
- •Система ввода – вывода. Программирование рекурсивных алгоритмов в языке Турбо Паскаль. Примеры.
- •Система ввода вывода : структура с одним общим интерфейсом
- •Система ввода-вывода: структура с каналами ввода-вывода
- •Система команд эвм общего назначения, методы адресации, типы команд, типы и размеры операндов.
- •Системы автоматизированного поиска в Internet: состав и области применения.
- •Системы ввода – вывода: структуры с общим интерфейсом.
- •Системы счисления. Двоичная, восьмеричная, шестнадцатиричная системы счисления. Примеры представления числа в указанных системах счисления
- •Сканеры, модемы, их назначение и характеристики
- •Состав основной памяти компьютера. Конструктивное исполнение модулей памяти.
- •Составляющие элементы реляционной модели данных и формы их представления.
- •Сравнительная характеристика файловых систем fat, ntfs.
- •Средства синхронизации потоков в ос
- •Стандартные визуальные компоненты в Delphi.
- •Странично – сегментная организация памяти
- •Строковые типы данных в языке Турбо Паскаль. Основные процедуры и функции обработки строковых данных. Примеры.
- •Структура и функции программного обеспечения ккс.
- •Структура и функции программного обеспечения лкс.
- •Структура и функции системы обеспечения безопасности (соб) ккс
- •Структура и характеристика языка sql
- •Структура программы в языке Турбо Паскаль
- •Структура проекта в Delphi
- •Структура типов данных в языке Турбо Паскаль.
- •Структурированные типы данных: массивы, записи, множества в языке Турбо Паскаль. Примеры.
- •Структурная организация и взаимодействие узлов и устройств эвм
- •Текстовые файлы в языке Турбо Паскаль. Стандартные средств обработки текстовых файлов. Примеры.
- •Типизированные и нетипизированные файлы в языке Турбо Паскаль. Стандартные средства обработки файлов. Примеры.
- •Типовая структура гкс
- •Типовая структура ккс.
- •Типовая структура ккс.
- •Типовые струкуры многопроцессорных систем
- •Типы гкс и их особенности
- •Типы сетей связи и тенденции их развития
- •Требования к ос. Классификация ос.
- •Трехзвенная модель распределенной системы бд.
- •Управление доступом к передающей среде. Методы и протоколы доступа.
- •Управление проектами в Delphi.
- •Условные конструкции языка Турбо Паскаль. Примеры.
- •Форма. Управление понятиями формы в Delphi. Примеры.
- •Формы представления чисел в эвм. Коды чисел: прямой, обратный, дополнительный
- •Характеристика Microsoft sql Server 2000. Компоненты sql Server 2000.
- •Характеристика Windows 2003.
- •Характеристика Windows nt/2000.
- •Характеристика внешних запоминающих устройств (взу).
- •1. Накопители на жестких магнитных дисках
- •2. Накопители на компакт-дисках
- •4. Накопители на гибких магнитных дисках
- •Характеристика и области применения сетей Frame Relay.
- •Характеристика и области применения сетей isdn.
- •Характеристика и области применения сетей атм.
- •Характеристика и области применения сетей х.25
- •Характеристика интегрированной среды разработки программ Delphi.
- •Характеристика класса tObject. Методы класса. Примеры.
- •Характеристика клиентского программного обеспечения в Internet.
- •Характеристика накопителей на гибких и жестких магнитных дисках.
- •Накопители на жестких дисках
- •Характеристика протоколов семейства tcp/ip
- •Характеристика сетевой модели данных.
- •Характеристика спутниковых сетей связи.
- •Характеристика технологии Ethernet.
- •Характеристика языка sql. Функциональные категории языка sql.
- •Характеристика языка программирования Турбо Паскаль.
- •Характеристики основных топологий в лкс.
- •Эталонная модель взаимодействия открытых систем osi.
Понятие отношения. Условия, при которых таблицу можно считать отношением.
Отношения
Для понимания истинного смысла термина “отношение” рассмотрим несколько математических понятий. Допустим, у нас есть два множества D1 и D2 , где D1 = {2,4} и D2 = {1,3,5}. Декартовым произведением этих двух множеств (обозначается как D1 x D2) называется набор из всех возможных пар, в которых первым идет элемент множества D1, а вторым – элемент множества D2. Альтернативный способ выражения этого произведения заключается в поиске всех комбинаций элементов, в которых первым идет элемент множества D1, а вторым – элемент множества D2. В данном примере получим следующий результат:
D1 х D2 = {(2,1),(2,3),(2,5),(4,1),(4,3),(4,5)}.
Любое подмножество этого декартового произведения является отношением. Например, в нем можно выделить отношение R:
R = ((2,1),(4,1)}.
Для определения тех возможных пар, которые будут входить в отношение, можно задать некоторые условия их выборки. Например, если обратить внимание на то, что отношение R содержит все возможные пары, в которых второй элемент равен 1, то определение отношения R можно сформулировать следующим образом:
R = {(x,y) | x D1, y D2, у = 1}.
На основе тех же множеств можно сформировать другое отношение S, в котором первый элемент всегда должен быть в два раза больше второго. Тогда определение отношения S можно сформулировать так:
S = {(x,y) | x D1, y D2, х = 2у}.
В данном примере только одна возможная пара данного декартового произведения соответствует этому условию: S = {(2,1)}.
Понятие отношения можно легко распространить и на три множества. Пусть имеется три множества: D1, D2 и D3. Декартово произведение D1 x D2 x D3 этих трех множеств является набором, состоящим из всех возможных троек элементов, в которых первым идет элемент множества D1, вторым – элемент множества D2, а третьим – элемент множества D3. Любое подмножество этого декартового произведения является отношением. Рассмотрим следующий пример трех множеств и вычислим их декартово произведение:
D1 = {(1,3)}, D2= = {(2,4)}, D3 = {(5,6)},
D1 х D2 x D3 = {(1,2,5), (1,2,6), (1,4,5), (1,4,6), (3,2,5), (3,2,6), (3,4,5), (3,4,6)}.
Любое подмножество из приведенных выше троек элементов является отношением. Увеличивая количество множеств, можно дать обобщенное определение отношения на n доменах. Пусть имеется n множеств D1, D2, .., Dn. Декартово произведение для этих n. множеств можно определить следующим образом:
D1 x D2 x….x Dn = {(d1, d2,..., dn) | d1D1, d2D2,...,dnDn.
Обычно это выражение записывают в следующем символическом виде: .
Любое множество n-арных кортежей этого декартового произведения является отношением n множеств. Обратите внимание на то, что для определения этих отношений необходимо указать множества, или домены, из которых выбираются значения.
Используя указанные концепции в контексте базы данных, получим следующее определение реляционной схемы. Реляционная схема – имя отношения, за которым следует множество пар имен атрибутов и доменов. Например, для атрибутов А1, А2, ..., Аn с доменами D1, D2, ..., Dn реляционной схемой будет множество {A1 : D1, A2 : D2, ... , An : Dn}. Отношение R, заданное реляционной схемой S, является множеством отображений имен атрибутов на соответствующие им домены. Таким образом, отношение R является множеством таких n-арных кортежей { A1 : d1, A2 : d2, ... , An : dn }, где d1D1, d2D2,..., dnDn.
Каждый элемент n-арного кортежа состоит из атрибута и значения этого атрибута. Обычно при записи отношения в виде таблицы имена атрибутов перечисляются в заголовках столбцов, а кортежи образуют строки формата (d1, d2, ..., dn), где каждое значение берется из соответствующего домена. Таким образом, в реляционной модели отношение можно представить как произвольное подмножество декартового произведения доменов атрибутов, тогда как таблица – это всего лишь физическое представление такого отношения.
В примере, рассмотренном ранее, отношение Branch имеет атрибуты Bno, Street, City, Postcode, Tel_No и Fax_No с соответствующими им доменами. Отношение Branch представляет собой произвольное подмножество декартового произведения доменов или произвольное множество 6-арных кортежей, в которых первым идет элемент из домена BRANCH_NUMBER, вторым – элемент из домена STREET_NAME и т.д. Например, один из 6-арных кортежей может иметь такой вид:
{( 23, Москва, 111111, Победы, 1231112, 1231113)}.
Этот же кортеж можно записать в более корректной форме:
{(Bno : ‘23’, City : ‘Москва’, Postcode : ‘111111’, Street : ‘Победы’, Tel_№ : ‘1231112’, Fax _№ : ‘1231113’)}
Таблица Branch представляет собой удобный способ записи всех 6-арных кортежей, образующих отношение в некоторый заданный момент времени. Это замечание объясняет, почему строки таблицы в реляционной модели называются кортежами.
Фундаментальные свойства отношений
Отношение обладает следующими характеристиками:
• оно имеет имя, которое отличается от имен всех других отношений;
• каждая ячейка отношения содержит только атомарное (неделимое) значение;
• каждый атрибут имеет уникальное имя;
• значения атрибута берутся из одного и того же домена;
• порядок следования атрибутов не имеет никакого значения;
• каждый кортеж является уникальным, т.е. дубликатов кортежей быть не может;
• теоретически порядок следования кортежей в отношении не имеет никакого значения. (Однако практически этот порядок может существенно повлиять на эффективность доступа к ним.)
Для иллюстрации смысла этих ограничений рассмотрим отношение Branch (см. табл. 1). Поскольку каждая ячейка должна содержать только одно значение, то не допускается хранение в одной и той же ячейке двух номеров телефона одного и того же отделения компании. Иначе говоря, отношения не могут содержать повторяющихся групп. Об отношении, которое обладает таким свойством, говорят, что оно нормализовано, или находится в первой нормальной форме. (Более подробно нормальные формы рассматриваются ниже.)
Имена столбцов, указанные в их верхней строке, соответствуют именам атрибутов отношения. Значения атрибута Bno берутся из домена BRANCH_NUMBERS – не допускается размещение в этом столбце иных значений, например почтового индекса. Столбцы можно менять местами при условии, что имя атрибута перемещается вместе с его значениями. Таблица все еще будет представлять то же отношение, если атрибут Tel_No расположить в ней перед атрибутом Postcode, хотя для лучшей читабельности разумнее было бы располагать отдельные части адреса поблизости.
Отношение не может содержать кортежей-дубликатов. Например, строка ( 23, Москва, 111111, Победы, 1231112, 1231113) может быть представлена в отношении только один раз. При необходимости строки можно менять местами произвольным образом (например, переместить строку отделения ‘23’ на место строки отделения ‘24’), само отношение при этом останется прежним.
Большая часть свойств отношений происходит от свойств математических отношений реляционной алгебры, рассмотренных выше:
• Поскольку отношение является множеством, то порядок элементов не имеет значения. Следовательно, порядок кортежей в отношении несущественен.
• В множестве нет повторяющихся элементов. Аналогично, отношение не может содержать кортежей-дубликатов.
• Как и при вычислении декартового произведения множеств с простыми однозначными элементами (например, целочисленными значениями), каждый элемент в каждом кортеже должен иметь единственное значение. Однако математическое отношение не нуждается в нормализации. Кодд предложил запретить наличие повторяющихся групп с целью упрощения реляционной модели данных.
• В математическом отношении порядок следования элементов в кортеже имеет значение. Например, допустимая пара значений (1, 2) совершенно отлична от допустимой пары (2, 1). Это утверждение неверно для отношений в реляционной модели, где специально оговаривается, что порядок атрибутов несущественен. Дело в том, что заголовки столбцов однозначно определяют, к какому именно атрибуту относится данное значение. Следствием этого факта является положение о том, что порядок следования заголовков столбцов в заголовке отношения несущественен. Однако, если структура отношения уже определена, то порядок элементов в кортежах тела отношения должен соответствовать порядку имен атрибутов.