
- •Содержание
- •1.1.Классификация и биологическая роль липидов
- •1.1.1. Жирные кислоты и их производные
- •1.1.1.1. Производные высших жирных кислот
- •1.1.2. Глицеринсодержащие липиды
- •1.1.2.1. Ацилглицерины
- •1.1.2.2. Глицерофосфолипиды
- •1.1.3. Липиды, не содержащие в своем составе глицерин.
- •1.1.3.1. Сфинголипиды
- •1.1.3.2. Стероиды
- •1.1.3.3. Полипреноиды
- •1.1.4. Соединения смешанной природы
- •1.2. Процессы усвоения экзогенных липидов
- •1.2.1. Расщепление липидов в желудочно-кишечном тракте.
- •1.2.2. Всасывание продуктов переваривания липидов
- •1.3. Ресинтез липидов в кишечной стенке
- •1.3.1. Ресинтез триацилглицеринов в стенке кишечника
- •1.4. Транспорт липидов из кишечника к органам и тканям
- •2.1. Окисление высших жирных кислот
- •2.I.1а. Перекисное окисление липидов
- •2. Развитие цепных реакций.
- •2.I.Iб. Ферментативное окисление
- •2.1.2. Особенности окисления жирных кислот с нечетным числом атомов углерода и ненасыщенных жирных кислот
- •2.3. Биосинтез и окислительный распад кетоновых (ацетоновых) тел
- •2.5. Эндогенный синтез высших жирных кислот
- •2.5.1. Транспорт ацетильных групп из митохондрий в цитозоль
- •2.5.3. Синтез других высших жирных кислот
- •3.1. Обмен триглицеридов в тканях
- •3.2. Обмен фосфолипидов в тканях
- •3.3. Представление о путях синтеза и распада сфинголипидов
- •3.5. Липидтранспортная система плазмы крови
- •3.5.1. Общая характеристика липидтранспортной системы
- •3.5.2. Метаболизм лпонп и лпнп
- •3.5.3. Метаболизм лпвп
- •4.1. Интеграция метаболических путей обмена липидов
- •4.2. Регуляция обмена липидов на уровне организма
- •4.3.Интеграция и регуляция обмена глюкозы
- •5.1.Патология липидного обмена
- •5.1.1. Наследственная гиперхиломикронемия
- •5.1.2.Семейная гиперхолестеринемия
- •5.1.3.Болезнь Нимана-Пика
- •5.1.4.Болезнь Тея-Сакса
- •5.2.Вторичные нарушения обмена липидов
- •5.2.1. Жировая дистрофия печени
- •5.2.2.Нарушение обмена липидов при ожирении
- •5.3.Желчно-каменная болезнь
- •5.4. Атеросклероз
- •5.5. Дислипопротеидемии
2.5.1. Транспорт ацетильных групп из митохондрий в цитозоль
В матриксе митохондрий Ацетил-КоА взаимодействует с оксалоацетатом переносится из матрикса митохондрий в цитозоль с помощью специальной транспортной системы. В цитозоле цитрат при участии АТФ и HS-KoA расщепляется на ацетил-КоА и оксалоацетат, реакция катализируется АТФ-цитратлиазой. Образовавшийся оксалоацетат при участии цитозольной малатдегидрогеназы восстанавливается в малат, причем донором восстановительных эквивалентов выступает НАДН+Н+. На следующем этапе малат при участии фермента малатдегидрогеназы декарбоксилирующей превращается в пируват с выделением СО2 , в ходе реакции идет восстановление НАДФ+ в. НАДФН+Н+. Образовавшийся пируват поступает в матрикс митохондрий, где подвергается карбоксилированию с регенерацией оксалоацетата .
Таким образом в цитозоле появляются, во-первых, ацетильный остаток, используемый в дальнейшем в качестве пластического материала для синтеза высших жирных кислот, и, во-вторых, образуется НАДФН+Н+, который служит донором восстановительных эквивалентов при этом биосинтезе.
2.5.2.Синтез пальмитиновой кислоты. Биосинтез жирных кислот наиболее активно происходит в цитозоле клеток печени, кишечника, жировой ткани в состоянии покоя или после еды.Условно можно выделить 4 этапа биосинтеза:
1.Образование ацетил-SКоА из глюкозы или кетогенных аминокислот. 2.Перенос ацетил-SКоА из митохондрий в цитозоль: а)может быть в комплексе с карнитином, также как переносятся высшие жирные кислоты, но здесь транспорт идет в другом направлении, б)обычно в составе лимонной кислоты, образующейся в первой реакции ЦТК. Поступающий из митохондрий цитрат в цитозоле расщепляется АТФ-цитрат-лиазой до оксалоацетата и ацетил-SКоА. Оксалоацетат в дальнейшем восстанавливается до малата, и последний либо переходит в митохондрии (малат-аспартатный челнок), либо декарбоксилируется в пируват малик-ферментом ("яблочный" фермент).
3. Образование малонил-SКоА из ацетил-SКоА.Карбоксилирование ацетил-SКоА катализируется ацетил-SКоА-карбоксилазой, мульферментным комплексом из трех ферментов.
4. Синтез пальмитиновой кислоты осуществляется мультиферментным комплексом "синтаза жирных кислот" (синоним пальмитатсинтаза) в состав которого входит 6 ферментов и ацил-переносящий белок (АПБ). Ацил-переносящий белок включает производное пантотеновой кислоты – 6-фосфопантетеин (ФП), имеющий HS-группу, подобно HS-КоА. Один их ферментов комплекса, 3-кетоацил-синтаза, также имеет HS-группу в составе цистеина. Взаимодействие этих групп обусловливает начало и продолжение биосинтеза жирной кислоты, а именно пальмитиновой кислоты. Для реакций синтеза необходим НАДФН.
В первых двух реакциях последовательно присоединяются малонил-SКоА к фосфопантетеину ацил-переносящего белка и ацетил-SКоА к цистеину 3-кетоацилсинтазы.3-Кетоацилсинтаза катализирует третью реакцию – перенос ацетильной группы на С2 малонила с отщеплением карбоксильной группы. Далее кетогруппа в реакциях восстановления (3-кетоацил-редуктаза), дегидратации (дегидратаза) и опять восстановления (еноил-редуктаза) превращается в метиленовую с образованием насыщенного ацила, связанного с фосфопантетеином. Ацилтрансфераза переносит полученный ацил на цистеин 3-кетоацил-синтазы, к фосфопантетеину присоединяется малонил-SКоА и цикл повторяется 7 раз до образования остатка пальмитиновой кислоты. После этого пальмитиновая кислота отщепляется шестым ферментом комплекса тиоэстеразой.