
- •Как найти производную? Примеры решений
- •1) Постоянное число можно (и нужно) вынести за знак производной
- •2) Производная суммы равна сумме производных
- •3) Производная произведения функций
- •4) Производная частного функций
- •5) Производная сложной функции
- •Производная сложной функции. Примеры решений
- •Сложные производные. Логарифмическая производная. Производная степенно-показательной функции
- •Сложные производные
- •Логарифмическая производная
- •Производная степенно-показательной функции
- •Производная функции, заданной неявно. Производная параметрически заданной функции
- •Производная функции, заданной неявно
- •Производная параметрически заданной функции
- •Простейшие типовые задачи с производной. Примеры решений
- •Производная функции в точке
- •Уравнение касательной к графику функции
- •Дифференциал функции одной переменной
- •Вторая производная
- •Частные производные. Примеры решений
- •3) Правила и таблица производных элементарных функций справедливы и применимы для любой переменной ( , либо какой-нибудь другой), по которой ведется дифференцирование.
- •Частные производные функции трёх переменных
- •Частные производные второго порядка функции трёх переменных
Вторая производная
Всё
очень просто. Вторая производная –
это производная
от первой производной:
Стандартные
обозначения второй производной:
,
или
(дробь
читается так: «дэ два игрек по дэ икс
квадрат»). Чаще всего вторую производную
обозначают первыми двумя вариантами.
Но третий вариант тоже встречается,
причем, его очень любят включать в
условия контрольных заданий, например:
«Найдите
функции…».
А студент сидит и битый час чешет репу,
что это вообще такое.
Рассмотрим
простейший пример. Найдем вторую
производную от функции
.
Для того чтобы найти вторую производную, как многие догадались, нужно сначала найти первую производную:
Теперь находим вторую производную:
Готово.
Рассмотрим более содержательные примеры.
Пример 11
Найти
вторую производную функции
Найдем
первую производную:
На
каждом шаге всегда смотрим, нельзя ли
что-нибудь упростить? Сейчас нам предстоит
дифференцировать произведение двух
функций, и мы избавимся от этой
неприятности, применив
известную тригонометрическую
формулу
.
Точнее говоря, использовать формулу
будем в обратном направлении:
:
Находим
вторую производную:
Готово.
Можно
было пойти другим путём – понизить
степень функции еще перед дифференцированием,
используя формулу
:
Если интересно, возьмите первую и вторую производные снова. Результаты, естественно, совпадут.
Отмечу, что понижение степени бывает очень выгодно при нахождении частных производных функции. Здесь же оба способа решения будут примерно одинаковой длины и сложности.
Как и для первой производной, можно рассмотреть задачу нахождения второй производной в точке.
Например:
Вычислим значение найденной второй
производной в точке
:
Необходимость находить вторую производную и вторую производную в точке возникает при исследовании графика функции на выпуклость/вогнутость и перегибы.
Пример 12
Найти
вторую производную функции
.
Найти
Это пример для самостоятельного решения.
Аналогично можно найти третью производную, а также производные более высоких порядков. Такие задания встречаются, но встречаются значительно реже. Можно рассказать о специфических приемах, формуле Лагранжа, и по мере наличия времени я обязательно напишу отдельный методический материал.
Желаю успехов!
Решения и ответы:
Пример
2: Найдем производную:
Вычислим
значение функции в точке
:
Пример
4: Найдем производную:
Вычислим
производную в заданной точке:
Пример
6: Уравнение касательной составим по
формуле
1)
Вычислим значение функции в точке
:
2)
Найдем производную. Перед дифференцированием
функцию выгодно упростить:
3)
Вычислим значение производной в
точке
:
4)
Подставим значения
,
и
в
формулу
:
Пример
8: Преобразуем функцию:
Найдем
производную:
Запишем
дифференциал:
Пример
10: Найдем производную:
Запишем
дифференциал:
Вычислим
дифференциал в точке
:
Пример
12: Найдем первую производную:
Найдем
вторую производную:
Вычислим:
Частные производные. Примеры решений
На данном уроке мы познакомимся с понятием функции двух переменных, а также подробно рассмотрим наиболее распространенное задание – нахождение частных производныхпервого и второго порядка, полного дифференциала функции. Студенты-заочники, как правило, сталкиваются с частными производными на 1 курсе во 2 семестре. Причем, по моим наблюдениям, задание на нахождение частных производных практически всегда встречается на экзамене.
Для эффективного изучения нижеизложенного материала Вам необходимо уметь более или менее уверенно находить «обычные» производные функции одной переменной. Научиться правильно обращаться с производными можно на уроках Как найти производную? иПроизводная сложной функции. Также нам потребуется таблица производных элементарных функций и правил дифференцирования, удобнее всего, если она будет под рукой в распечатанном виде. Раздобыть справочный материал можно на страницеМатематические формулы и таблицы.
Начнем
с самого понятия функции двух переменных,
я постараюсь ограничиться минимумом
теории, так как сайт имеет практическую
направленность. Функция двух переменных
обычно записывается как
,
при этом переменные
,
называются независимыми
переменными или аргументами.
Пример:
–
функция двух переменных.
Иногда
используют запись
.
Также встречаются задания, где вместо
буквы
используется
буква
.
Полезно
знать геометрический смысл функций.
Функции одной переменной
соответствует
определенная линия на плоскости,
например,
–
всем знакомая школьная парабола. Любая
функция двух переменных
с
геометрической точки зрения представляет
собой поверхность в трехмерном
пространстве (плоскости, цилиндры, шары,
параболоиды и т.д.). Но, собственно, это
уже аналитическая геометрия, а у нас на
повестке дня математический анализ,
который
никогда
не давал списывать мой вузовский
преподаватель является
моим «коньком».
Переходим к вопросу нахождения частных производных первого и второго порядков. Должен сообщить хорошую новость для тех, кто выпил несколько чашек кофе и настроился на невообразимо трудный материал: частные производные – это почти то же самое, что и «обычные» производные функции одной переменной.
Для частных производных справедливы все правила дифференцирования и таблица производных элементарных функций. Есть только пара небольших отличий, с которыми мы познакомимся прямо сейчас.
Пример 1
Найти
частные производные первого и второго
порядка функции
Сначала найдем частные производные первого порядка. Их две.
Обозначения:
или
–
частная производная по «икс»
или
–
частная производная по «игрек»
Начнем с . Когда мы находим частную производную по «икс», то переменная считается константой (постоянным числом).
Решаем. На данном уроке я буду приводить полное решение сразу, а комментарии давать ниже.
Комментарии к выполненным действиям:
(1) Первое, что мы делаем при нахождении частной производной – заключаем всю функцию в скобки под штрих с подстрочным индексом.
Внимание,
важно! Подстрочные
индексы НЕ ТЕРЯЕМ по ходу решения. В
данном случае, если Вы где-нибудь
нарисуете «штрих» без
,
то преподаватель, как минимум, может
поставить рядом с заданием
(сразу
откусить часть балла за невнимательность).
Далее данный шаг комментироваться не будет, все сделанные замечания справедливы для любого примера по рассматриваемой теме.
(2)
Используем правила дифференцирования
,
.
Для простого примера, как этот, оба
правила вполне можно применить на одном
шаге. Обратите внимание на первое
слагаемое: так как
считается
константой, а любую константу можно
вынести за знак производной,
то
мы
выносим за скобки. То есть в данной
ситуации
ничем
не лучше обычного числа. Теперь посмотрим
на третье слагаемое
:
здесь, наоборот, выносить нечего. Так
как
константа,
то
–
тоже константа, и в этом смысле она ничем
не лучше последнего слагаемого –
«семерки».
(3) Используем табличные производные и .
(4) Упрощаем, или, как я люблю говорить, «причесываем» ответ.
Теперь . Когда мы находим частную производную по «игрек», то переменная считается константой (постоянным числом).
(1)
Используем те же правила дифференцирования
,
.
В первом слагаемом выносим константу
за
знак производной, во втором слагаемом
ничего вынести нельзя поскольку
–
уже константа.
(2)
Используем таблицу производным
элементарных функций. Мысленно
поменяем в таблице все «иксы» на «игреки».
То есть данная таблица рАвно справедлива
и для
(да
и вообще почти для любой буквы). В
частности, используемые нами формулы
выглядят так:
и
.
Итак, частные производные первого порядка найдены
Подведем итог, чем же отличается нахождение частных производных от нахождения «обычных» производных функции одной переменной:
1) Когда мы находим частную производную , переменная считается константой.
2) Когда мы находим частную производную , переменная считается константой.