Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Матричные синтезы 2013.docx
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
306.32 Кб
Скачать

2. Элонгация трансляции.

Большая субчастица рибосомы содержит два центра для связывания тРНК: аминоацильный (А) и пептидильный (П). В элонгации участвуют также белковые факторы.

Процесс элонгации делят на 3 этапа:

- узнавание кодона и связывание аминоацил-тРНК;

- образование пептидной связи;

- транслокация.

I этап. В свободный аминоацильный центр рибосомы доставляется аминоацил-тРНК в соответствии с кодоном мРНК. Участвует фактор элонгации. Затраты энергии компенсируются ГТФ. В итоге в транслирующей рибосоме в пептидильном центре находится формилметионил-тРНК, в аминоацильном центре - аминоацил-тРНК (первая аминокислота после метионина).

II этап. Происходит перенос остатка метионина с метионил-тРНК на аминогруппу новой аминоацил-тРНК. Протекает реакция транспептидирования, фермент - пептидилтрансфераза. В цитозоль из пептидильного центра высвобождается метионил-тРНК. В аминоацильном центре образуется дипептидил-тРНК, а пептидильный центр освобождается.

III этап. Образовавшаяся дипептидил-тРНК переносится с аминоацильного на пептидильный центр. Для этого рибосома передвигается на один кодон относительно мРНК в направлении 5’ - 3’ при участии фермента пептидилтранслоказы. Используется энергия ГТФ. Дипептидил-тРНК занимает пептидильный центр, а аминоацильный центр освобождается и принимает новую аминоацил-тРНК, соответствующую кодону мРНК - образуется трипептидил-тРНК и т.д. При синтезе каждой пептидной связи тратится 2 молекулы АТФ и 2 молекулы ГТФ.

3. Терминация трансляции. Необходимы: терминирующие кодоны (УАА, УАГ, УГА), факторы терминации (рилизинг-факторы). Для терминирующих кодонов отсутствуют соответствующие им тРНК. Когда в рибосому поступает терминирующий кодон, к нему присоединяется фактор терминации. Меняется специфичность пептидилтрансферазы, происходит гидролиз связи между синтезированным пептидом и последней тРНК, и освобождается белок. Расходуется энергия ГТФ.

ПОСТСИНТЕТИЧЕСКАЯ МОДИФИКАЦИЯ БЕЛКА

Во многих случаях белки синтезируются в виде предшественников – биологически неактивных молекул. Их функциональная активность проявляется в результате превращений, называемых постсинтетической или посттрансляционной модификацией (процессинг).

Примеры посттрансляционной модификации белков:

- протеолитическое отщепление N-концевого формилметионина или метионина;

- отщепление сигнальных пептидов;

- частичный протеолиз;

- посттрансляционная модификация белков по аминокислотным радикалам: - ковалентное присоединение простетической группы, метилирование радикалов лизина и аргинина, ацетилирование N-концевой аминокислоты, фосфорилирование гистонов и негистоновых белков хроматина, гидроксилирование радикала пролина; присоединение олигосахаридных фрагментов (гликозилирование) к радикалам аспарагина, серина и треонина и т.д.

Выбор правильной структуры белка происходи при участии белков шаперонов. Гидрофобные участки на поверхности глобулы шаперонов-70 взаимодействуют с гидрофобными участками синтезированной цепи, защищая ее от неравильных взаимодействий с другими белками цитозоля. Шапероны-60 участвуют в исправлении пространственной структуры неправильно свернутой или поврежденной цепи.

Мутации в шапероне, входящем в состав хрусталика глаза, приводят к помутнению хрусталика из-за агрегации белков и развитию катаракты.