Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Элементарные функции и их графики.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2.16 Mб
Скачать

§ 3. Сложная функция

Познакомимся с понятием суперпозиции функций, которое состоит в том, что в качестве аргумента одной функции используется другая функция. Полученная в результате суперпозиции функция называется сложной функцией. Записывается сложная функция следующим образом: . Например: , . Тогда сложная функция . Чтобы найти значение сложной функции, подставляют сначала заданное значение во внутреннюю функцию и находят ее значение , а затем уже вычисляют соответствующее значение функции .

При выполнении суперпозиции функций считают, что множество значений внутренней функции содержится в области определения внешней функции .

Сложную функцию можно составить из большего числа более простых функций.

Пример 1. Сложную функцию представьте в виде цепочки элементарных функций.

Решение. Будем последовательно выполнять операции, которые заданы в формуле: , , . Следовательно, заданная в условии задачи функция является суперпозицией трех основных элементарных функций.

Пример 2. Даны функции . Запишите сложную функцию .

Решение. Подставляя последовательно функции одну в другую, получим сложную функцию .

§ 4. Обратная функция

Пусть функция , определенная на множестве Х, такова, что любым двум различным значениям аргумента х ставит в соответствие различные значения у, то есть, если , то . Эта функция устанавливает взаимнооднозначное соответствие между областью своего определения Х и областью изменения Y.

Д ействительно, каждой точке ставится в соответствие единственное . При этом каждой точке соответствует единственное , такое, что . Таким образом, на множестве Y определена функция , которая называется обратной к функции f. Область определения обратной функции – множество Y, область значений – множество Х. Графики функции и обратной к ней функции симметричны относительно прямой (рис. 4). Для обратных функций верно соотношение .

Для нахождения обратной функции необходимо из равенства выразить х через у, и в полученном выражении букву х заменить буквой у, букву у – буквой х.

Пример 3. Имеют ли функции и обратные? Если да, то найдите их.

Решение. Выразим х из формулы . Получим . Обозначив аргумент через х, а функцию через у, получим , то есть функция является обратной к функции .

Функция не имеет обратной, так как она не является взаимнооднозначной. Действительно, .

Пример 4. Являются ли функции и взаимнообратными?

Решение. Нет, так как . Однако, если данные функции рассматривать только при , то есть считать , то эти функции становятся взаимнообратными.

§ 5. Свойства функций

Определение 1. Функция называется монотонно возрастающей на множестве , если для любой пары точек из условия следует, что , то есть большему значению аргумента соответствует большее значение функции.

Определение 2. Функция называется монотонно убывающей на множестве , если для любой пары точек из условия следует, что , то есть большему значению аргумента соответствует меньшее значение функции.

Монотонно возрастающие и монотонно убывающие функции называют монотонными.

Монотонные функции обладают следующими свойствами:

1) сумма двух монотонно возрастающих (монотонно убывающих) функций является монотонно возрастающей (монотонно убывающей) функцией;

2) произведение двух положительных монотонно возрастающих (монотонно убывающих) функций является монотонно возрастающей (монотонно убывающей) функцией;

3) если функция монотонно возрастающая (монотонно убывающая), то функция монотонно убывающая (монотонно возрастающая);

4) если положительная функция является монотонно возрастающей (монотонно убывающей), то функция является монотонно убывающей (монотонно возрастающей);

5) если функция монотонная, то она имеет обратную функцию.

Определение 3. Функция называется ограниченной сверху на множестве , если существует такое число М, что значение функции в любой точке не превосходит этого числа, то есть для любого выполняется неравенство .

Определение 4. Функция называется ограниченной снизу на множестве , если существует такое число m, что значение функции в любой точке не меньше этого числа, то есть для любого выполняется неравенство .

Ограниченная сверху и снизу на множестве Х функция называется ограниченной на этом множестве. Другими словами, если функция ограничена на множестве Х, то существуют такие числа m и М, что для всех . Условие ограниченности можно также записать в виде для некоторого положительного числа М.

Определение 5. Точка называется точкой максимума функции , если существует окрестность этой точки такая, что для всех точек из этой окрестности выполняется неравенство .

Определение 6. Точка называется точкой минимума функции , если существует окрестность этой точки такая, что для всех точек из этой окрестности выполняется неравенство .

Точки максимума и минимума называют точками экстремума функции.

Заметим, что функция в области своего определения может иметь несколько точек максимума или минимума.

Определение 7. Будем говорить, что в точке функция принимает наибольшее на множестве Х значение, если для всех точек справедливо неравенство .

Определение 8. Будем говорить, что в точке функция принимает наименьшее на множестве Х значение, если для всех точек справедливо неравенство .

Если множество Х представляет собой отрезок [ab], то наибольшее и наименьшее значения функция принимает либо в точке экстремума, либо на конце отрезка.

Говорят, что множество Х симметрично относительно начала координат, если для любой точки противоположная точка .

Определение 9. Функция называется четной, если ее область определения симметрична относительно начала координат, и для любого .

Определение 10. Функция называется нечетной, если ее область определения симметрична относительно начала координат, и для любого .

График четной функции имеет ось симметрии: так как точки и принадлежат графику функции, то он симметричен относительно оси ординат. График нечетной функции имеет центр симметрии: так как точки и принадлежат графику функции, то он симметричен относительно начала координат.

Четные и нечетные функции обладают следующими свойствами:

1) сумма двух четных (нечетных) функций есть функция четная (нечетная);

2) произведение двух четных (нечетных) функций есть функция четная; произведение четной и нечетной функций есть функция нечетная;

3) если нечетная функция определена в нуле, то ;

4) всякая функция, определенная на множестве Х, симметричном относительно начала координат может быть представлена в виде суммы двух функций, определенных на Х, причем одна из этих функций является четной, а другая – нечетной.

Определение 11. Функция называется периодической, если существует такое число , что для любого точка и справедливо равенство .

Наименьшее из чисел Т в определении 11 называют периодом. Периодическая функция имеет бесконечно много периодов, все они кратны числу Т.

Все введенные в этом параграфе определения используются при исследовании функций и построении графиков.