Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курсовой цос теория.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.64 Mб
Скачать

Передаточная функция

Передаточная функция задаётся при помощи полюсов в левой полуплоскости комплексной плоскости, её нули совпадают с нулями модуля амплитудной характеристики, с тем лишь отличием, что их порядок равен 1.

Групповая задержка

Амплитудная характеристика и групповая задержка фильтра Чебышева II рода пятого порядка с .

Амплитудная характеристика и групповая задержка показаны на графике. Можно видеть, что пульсации амплитуды приходятся на полосу подавления, а не на полосу пропускания.

Фазовые характеристики

Типовая ФЧХ и фазовая задержка фильтра Чебышева II рода 10-го порядка.

Фазовые характеристики фильтра Чебышева II рода — фазо-частотная характеристика и фазовая задержка — представлены на рисунке. Фазо-частотная характеристика показывает распределение по частоте смещения фазы выходного сигнала относительно входного. Фазовая задержка определяется как частное от деления фазо-частотной характеристики на частоту и характеризует распределение по частоте временного смещения выходного сигнала относительно входного.

Временные характеристики

Типовые временные характеристики фильтра Чебышева II рода 5-го порядка.

Временные характеристики фильтра Чебышева II рода — импульсная переходная функция и переходная функция — представлены на рисунке. Импульсная переходная функция представляет собой реакцию фильтра на входной сигнал в виде дельта-функции Дирака, а переходная функция — реакцию на входное воздействие в виде единичной функции Хевисайда.

Цифровые фильтры Чебышева

Фильтры Чебышева часто реализуются в цифровой форме. Для того, чтобы от аналогового фильтра перейти к цифровому, необходимо над каждым каскадом фильтра осуществить билинейное преобразование. Весь фильтр получается путём последовательного соединения каскадов. Простой пример фильтра Чебышева низких частот I рода чётного порядка:

Z-преобразование каждого каскада:

.

Во временной области преобразование записывается как:

Коэффициенты и подсчитываются из коэффициентов и :

Для получения фильтра Чебышева более высокого порядка, необходимо соединить последовательно несколько каскадов.

Сравнение с другими линейными фильтрами

Ниже представлены графики АЧХ фильтра Чебышева I и II родов в сравнении с некоторыми другими фильтрами с тем же числом коэффициентов:

По графикам видно, что амплитудная характеристики фильтров Чебышева имеет более крутой спад, чем у фильтров Баттерворта, но не такой крутой, как у эллиптического фильтра.

Фильтр Бесселя

Фильтр Бесселя — в электронике и обработке сигналов один из наиболее[источник не указан 189 дней] распространённых типов линейных фильтров, отличительной особенностью которого является максимально гладкая групповая задержка (линейная фазо-частотная характеристика). Фильтры Бесселя чаще всего используют для аудио-кроссоверов. Их групповая задержка практически не изменяется по частотам полосы пропускания, вследствие чего форма фильтруемого сигнала на выходе такого фильтра в полосе пропускания сохраняется практически неизменной.

Передаточная функция

График амплитудно-частотной характеристики и групповой задержки для низкочастотного фильтра Бесселя четвёртого порядка. Спад амплитудно-частотной характеристики значительно менее крутой, чем у других линейных фильтров, однако групповая задержка практически не меняется по частотам полосы пропускания.

Передаточная функция фильтра Бесселя низких частот определяется следующим выражением:

где — обратный многочлен Бесселя, из-за чего фильтр и получил своё название; — частота среза.

Пример

Дана передаточная функция низкочастотного фильтра Бесселя третьего порядка

с амплитудно-частотной характеристикой

и фазо-частотной характеристикой

Групповая задержка такого фильтра:

Разложение групповой задержки в ряд Тейлора по степеням частоты:

Из последнего выражения видно, что коэффициенты перед степенями и равны нулю, а перед более высокими степенями весьма малы, вследствие чего групповая задежка близка к единице на низких частотах.