- •3. Элементы кинематики
- •3.1. Материальная точка, система материальных точек, абсолютно твердое тело - простейшие физические модели
- •3.1.1. Материальная точка
- •3.1.3. Абсолютно твердое тело
- •3.2. Тело отсчета
- •3.3. Система отсчета
- •3.8.1. Скорость направлена по касательной к траектории
- •3.8.2. Компоненты скорости
- •3.9. Вычисление пройденного пути
- •3.10.1. Нормальное и тангенциальное ускорение
- •6. Кинематика вращательного движения
- •6.1. Поступательное и вращательное движение
- •6.2. Псевдовектор бесконечно малого поворота
- •6.5. Связь линейной скорости материальной точки твердого тела и угловой скорости
- •4. Динамика материальной точки
- •4.6.1. Система си (System international)
- •4.6.1.1. Размерность силы
- •4.7. Третий закон Ньютона
- •5. Законы сохранения
- •5.1. Механическая система - это совокупность тел, выделенных нами для рассмотрения 5.1.1. Внутренние и внешние силы
- •5.2. Закон сохранения импульса
- •5.6.1. Консервативность силы тяжести
- •5.6.2. Неконсервативность силы трения
- •5.7. Потенциальная энергия может быть введена только для поля консервативных сил
- •5.8.Закон сохранения механической энергии
- •7. Динамика вращательного движения
- •8. Элементы специальной теории относительности
- •8.2. Принцип относительности Галилея:
- •8.3. Неудовлетворительность механики Ньютона при больших скоростях
- •Принцип постоянства скорости света:
- •8.5.1. Вывод преобразований Лоренца
- •Электричество
- •9. Постоянное электрическое поле
- •9.3. Электрическое поле
- •9.3.6. Принцип суперпозиции электрических полей
- •9.3.7. Напряженность поля точечного заряда
- •9.3.8. Линии напряженности
- •9.4.2.2. Заряд в произвольном месте внутри сферы
- •9.4.2.4. Поток вектора е поля системы зарядов, находящихся внутри замкнутой поверхности
- •9.4.2.5. Поток вектора е для поля, созданного зарядами, находящимися вне замкнутой поверхности
- •9.4.3. Формулировка теоремы Гаусса
- •9.4.4.1. Поле равномерно заряженной бесконечной плоскости
- •9.9. Проводник в электрическом поле
- •9.10. Электроемкость уединенного проводника
- •9.11. Электроемкость конденсатора
- •9.12. Энергия электрического поля
- •9.12.1. Плотность энергии электрического поля в вакууме
- •9.13. Электрическое поле в диэлектрике
- •9.13.1. Диэлектрик?
- •9.13.1.1. Два типа диэлектриков - полярные и неполярные
- •9.13.2. Поляризованность диэлектрика (вектор поляризации) - это дипольный момент единицы объема:
- •9.13.4.1. Плотность энергии электрического поля в диэлектрике
- •10. Постоянный электрический ток
- •10.1. Сила тока
- •10.2. Плотность тока
- •10.2.1. Связь плотности тока и скорости упорядоченного движения зарядов
- •10.4. Закон Ома для участка цепи
- •10.5. Закон Ома в дифференциальной форме
- •10.6. Закон Джоуля-Ленца в дифференциальной форме
- •Магнетизм. Уравнения Максвелла
- •11. Магнитное поле в вакууме
- •11.2. Проводник с током создает только магнитное поле, другой проводник с током реагирует только на магнитное поле
- •11.3. Рамка с током как регистратор магнитного поля. Вектор магнитной индукции
- •11.5.6. Магнитное поле тороида
- •11.6. Закон Ампера
- •11.7. Сила Лоренца - это сила, действующая со стороны магнитного поля на движущийся в нем заряд
- •11.7.1. Движение заряженной частицы в однородном магнитном поле
- •11.11.1. Потокосцепление
- •11.11.2. Индуктивность соленоида
- •11.11.3. Энергия магнитного поля
- •12. Магнитное поле в веществе
- •12.2. Классификация магнетиков
- •13. Уравнения Максвелла
- •13.1. Первая пара уравнений Максвелла в интегральной форме
- •13.1.1. Первое уравнение первой пары - это закон Фарадея-Ленца
- •13.1.2. Второе уравнение первой пары - нет магнитных зарядов
- •13.2. Вторая пара уравнений Максвелла в интегральной форме
- •13.3. Система уравнений Максвелла в интегральной форме
- •13.4. Система уравнений Максвелла в дифференциальной форме
- •Литература,
- •А.Н. Тюшев
- •В конспективном изложении
- •Колебания. Волны. Волновая оптика
- •Электронная версия учебного издания
- •14.1.1.4. График гармонического колебания
- •14.2 Дифференциальное уравнение гармонических колебаний
- •14.2.1 Колеблющиеся системы
- •14.3.2. Сложение колебаний одинаковой частоты и одинакового направления
- •14.3.3. Сложение колебаний близких частот
- •14.3.4. Сложение взаимно-перпендикулярных колебаний
- •14.4. Затухающие колебания
- •14.4.1. Колеблющиеся системы
- •14.4.5. Дифференциальное уравнение, описывающее затухающие колебания наших двух систем в этих обозначениях будет иметь один и тот же вид
- •14.4.6. Решение
- •14.4.7. Проверка
- •14.5.5. Дифференциальное уравнение, описывающее вынужденные колебания
- •14.5.6. Решение дифференциального уравнения
- •14.5.6.1. Частное решение неоднородного уравнения
- •14.5.6.1.1. Векторная диаграмма
- •14.5.6.1.2. Резонанс
- •16. Электромагнитные волны
- •16.1. Система уравнений Максвелла для плоской электромагнитной волны
- •16.1.1. Поперечность электромагнитных волн
- •16.1.2. Волновое уравнение
- •16.5.1.1. Вероятностное истолкование электромагнитной волны
- •17. Геометрическая оптика
- •17.1. Законы геометрической оптики
- •17.1.1. Закон прямолинейного распространения света
- •17.1.2. Закон независимости световых лучей
- •17.1.3. Законы отражения и преломления
- •17.2. Полное внутреннее отражение
- •17.3. Тонкие линзы
- •17.3.1. Собирающие и рассеивающие линзы
- •17.3.2. Фокусы линзы, фокальная плоскость
- •17.3.3. Фокусное расстояние тонкой линзы
- •17.3.4. Построение изображения в линзах
- •18.2. Способы получения когерентных источников
- •18.2.1. Опыт Юнга
- •18.2.2. Зеркала Френеля
- •18.2.3. Бипризма Френеля
- •18.2.4. Интерференция при отражении от прозрачных пластинок
- •18.2.4.1. Кольца Ньютона
- •18.3. Многолучевая интерференция
- •19. Дифракция света
- •19.1 Дифракция Френеля и Фраунгофера
- •19.2. Принцип Гюйгенса-Френеля
- •19.2.1. Математическая формулировка принципа Гюйгенса-Френеля
- •19.3. Зоны Френеля
- •19.3.1. Дифракция Френеля на круглом отверстии
- •19.3.2. Дифракция Фраунгофера на щели
- •19.3.2.1. Таутохронность линзы и ее следствия
- •19.3.2.2. Определение положений максимумов и минимумов методом зон Френеля
- •19.3.2.3. Зависимость интенсивности дифракционной картины от угла дифракции φ
- •19.4 Дифракционная решетка
- •19.4.1. Условие главного максимума для дифракционной решетки
- •19.4.2. Зависимость интенсивности дифракционной картины решетки от угла дифракции φ
- •19.4.2.1. Минимумы интенсивности дифракционной картины решетки
- •19.4.2.2. Добавочные минимумы, ближайшие к главным максимумам
- •19.4.3. График интенсивности Ip(Sinφ )
- •19.4.4. Дифракционная решетка как спектральный прибор
- •19.4.4.1. Угловая дисперсия дифракционной решетки
- •19.4.4.2. Линейная дисперсия
- •19.4.4.3. Разрешающая сила дифракционной решетки
- •19.4.4.3.1. Критерий Релея
- •19.4.4.4. Разрешающая сила решетки для цуга волн. Соотношение между длиной цуга δx и точностью определения волнового числа δk.
- •20. Поляризация света
- •20.1. Плоско поляризованная электромагнитная волна
- •20.2. Принцип действия поляризатора электромагнитной волны
- •20.2.1. Поляроид
- •20.3. Закон Малюса
- •20.3.1. Частично поляризованный свет. Степень поляризации
- •20.4. Эллиптическая и круговая поляризация
- •20.5. Поляризация при отражении и преломлении
- •20.5.1. Формулы Френеля
- •20.5.2. Закон Брюстера
- •20.6. Двойное лучепреломление
- •20.6.1. Модель двояко преломляющего кристалла
- •20.6.1.1. Необыкновенный и обыкновенный луч
- •21. Взаимодействие света с веществом
- •21.1. Дисперсия света
- •21.1.1. Классическая электронная теория дисперсии
- •21.1.1.1. Связь показателя преломления с дипольным моментом молекулы
- •21.1.1.2. Связь дипольного момента молекулы с напряженностью поля световой волны
- •21.1.1.2.1. Простейшая модель атома в поле световой волны
- •21.1.1.2.2. Уравнение движения электрона и его решение
- •21.1.1.2.3. Проекции дипольного момента и напряженности поля волны на ось X
- •21.1.1.3. Выражение для n2
- •21.1.1.4. Анализ зависимости n(ω)
- •21.2.1. Связь групповой скорости u с фазовой скоростью V
- •Список литературы, использованный при написании II части конспекта лекций по физике
19.4.4. Дифракционная решетка как спектральный прибор
Из условия главного максимума (19.4.1)
видно, что положение главного максимума зависит от длины волны λ. Зная постоянную решетки d, измерив на опыте угол φ, под которым находится максимум известного порядка m можно из условия главного максимума определить длину волны λ.
Если в получаемом спектре присутствуют две линии, длины волн которых λ1 и λ2 = λ1 + δλ незначительно отличаются, то возможность их раздельного восприятия определяется двумя причинами:
а) угловым расстоянием между максимумами;
б) их шириной.
Угловое расстояние между максимумами увеличивается с уменьшением d - постоянной решетки (это следует из условия главного максимума). Ширина максимумов определяется положением добавочных минимумов, ближайших к главным максимумам (19.4.2.2.) и уменьшается с увеличением N - числа щелей решетки, принимающих участие в образовании главного максимума.
19.4.4.1. Угловая дисперсия дифракционной решетки
По определению, угловой дисперсией D называется величина:
.
Здесь и далее до конца этой главы, δ - знак дифференциала, т.к. буква d используется - она обозначает постоянную решетки.
В определении угловой дисперсии δλ - разность длин волн двух соседних линий, δφ - соответствующая разность углов, под которыми наблюдаются главные максимумы.
Выразим угловую дисперсию через постоянную решетки d, порядок спектра m и угол φ, под которым наблюдается максимум. Для этого найдем дифференциал от правой и левой части условия главного максимума (19.4.1):
При малых φ Cosφ ≈ 1 и
.
19.4.4.2. Линейная дисперсия
,
где l - расстояние вдоль экрана наблюдения, δl - расстояние между линиями на экране.
При наблюдении дифракции с помощью собирающей линзы при малых углах (φ << 1) из рисунка, приведенного ниже, можно найти связь линейной и угловой дисперсии:
,
Если наблюдение дифракционной картины ведется без линзы, на большом расстоянии L от решетки, то тогда при малых углах
.
19.4.4.3. Разрешающая сила дифракционной решетки
Здесь δλ - минимальная разница в длинах волн соседних спектральных линий, при которой эти линии еще можно наблюдать раздельно.
19.4.4.3.1. Критерий Релея
определяет величину δλ в соответствии с рисунком, представленным ниже.
Считают, что линии разрешены, если главный максимум линии λ1 + δλ и добавочный минимум линии λ1 совпадает, следовтельно:
По определению (19.4.4.2)
.
В результате получим:
.
Разрешающая сила R есть величина, обратная относительной погрешности определения длины волны. Она показывает, во сколько раз длина волны λ больше минимально возможной абсолютной погрешности δλ.
Подчеркнем, что N в формуле для разрешающей силы - это число щелей, принимающих участие в образовании главного максимума порядка m. Если поперечный размер падающего на решетку пучка света ln больше длины решетки lреш, то N = lреш/d, d - постоянная решетки.
Если же lпуч < lреш , то N = lпуч/d.
Кроме того, предполагается, что колебания от всех N щелей когерентны.
19.4.4.4. Разрешающая сила решетки для цуга волн. Соотношение между длиной цуга δx и точностью определения волнового числа δk.
Пусть на решетку по нормали падает цуг волн, протяженностью δx (ось x - вдоль направления распространения цуга).
Нетрудно сообразить, что в образовании дифракционных максимумов под углом φ , удовлетворяющим условию главного максимума (19.4.1) d · Sinφ = λm будет участвовать лишь часть решетки AC шириной:
.
Происходит это потому, что в силу таутохронности линзы времена распространения вторичных волн в точку P из точек A и B одинаковы. Следовательно, в этот момент, когда до точки B дойдут вторичные волны из точки С, возбужденные передним фронтом цуга, точку A будет проходить его задний фронт. Значит, число щелей решетки, принимающих в данном случае участие в образовании максимума порядка m будет равно:
.
Но d · Sinφ = λm , тогда
,
Из определения разрешающей силы (14.4.4.3)
.
В соответствии с критерием Релея (14.4.4.3.1)
,
значит,
.
Подставив сюда N = Nm = δx/mλ, получим для δ λ:
.
Выразим λ и δ λ через волновое число k (15.2.4)
В результате получим:
.
Мы заменили знак равенства на знак "больше или равно", т.к. наши рассуждения проводились для предельно возможной точности определения длины волны δλ, или соответствующей ей точности определения волнового числа δk.
