
- •Предмет биофизики, ее значение для медицины
- •Часть первая основы общей биофизики
- •Процессов
- •1 От греч. «kybernetike»— искусство управления.
- •Теория регулирования
- •Глава 2 термодинамика биологических систем предмет и терминология
- •Глава 3 квантовая биофизика
- •Поглощение света
- •Значение
- •Глава 4 кинетика биохимических процессов
- •7 Медицинская биофизика 97
- •8 Медицинская биофизика
- •Часть вторая биофизика клетки
- •Глава 5 ультраструктура клетки и биологических мембран
- •Методы исследования
- •Общая структура клетки
- •Мембран
- •9 Медицинская биофизика
- •Адгезия клеток
- •Искусственные мембраны
- •Глава 6 проницаемость живых клеток
- •Методы изучения проницаемости
- •Диффузия
- •10) Медицинская биофизика 145
- •Фильтрация
- •В клетку
- •11 Медицинская биофизика
- •Глава 7 биоэлектрические потенциалы
- •Потенциал покоя
- •Проведение возбуждения
- •13 Медицинская биофизика 193
- •Передача возбуждения в синапсах
- •Глава 8 электрокинетические явления
- •Электроосмос
- •Глава 10
- •Биологическое действие ионизирующих излучений
- •16» Медицинская биофизика
- •Действие ультразвука на клетки
- •Часть третья элементы частной биофизики
- •Глава 11 биофизика мышечного сокращения
- •Глава 12 биофизика кровообращения
- •Анализ работы сердца
- •Глава 13 элементы биофизики органов чувств общие закономерности
- •Восприятие вкуса
- •Кодирование информации в органе слуха
- •Глава 14 биофизика внешнего дыхания
- •Сопротивление дыханию
- •21 Медицинская биофизика
9 Медицинская биофизика
129
кать поры, размеры которых варьируют. Превращение глобул из одной формы в другую происходит за счет химической энергии АТФ, освобождаемой содержащейся в мембранах АТФ-азой. По данным Кавана, изменение размеров мембраны не связано с наличием специальных сократительных белков, а обусловлено изменением взаимодействия на границе липид — белок.
На основании вышеизложенного некоторые исследователи приходят к выводу, что мембраны могут иметь два типа организации — слоистую и глобулярную, которые, возможно, могут переходить друг в друга.
В последнее время в нашей стране и за рубежом появляются сообщения о том, что в состав биологических мембран входят рибонуклеиновые кислоты (РНК), В. С. Шапот с сотрудниками выдвинули гипотезу, согласно которой РНК в липопротеидных комплексах мембраны играет роль структурной основы, матрицы, на которой собираются в определенном порядке белки. Этот порядок детерминируется нуклеотидными последовательностями РНК, которые «узнают» тот или иной белок.
Хорошая проницаемость мембран большинства клеток для воды и многих водорастворимых веществ позволяет предположить существование в мембранах особых отверстий — пор. Диаметр пор определяется косвенным путем по размеру водорастворимых молекул, которые еще способны проникать через мембрану. С помощью этого и других методов было установлено, что у большинства клеток диаметр пор составляет 0,35 — 0,8 нм. Поры могут иметь структуру длинного извитого канальца. Количество пор в мембране невелико. В эритроцитах, например, вся площадь, приходящаяся на их долю, составляет примерно 0,06% от общей поверхности мембраны.
Поры изнутри выстланы слоем молекул белка (см. рис. 21). Полярные группы молекул белка направлены в сторону отверстия поры, а неполярные вступают во взаимодействие с молекулами липидов. Благодаря наличию полярных групп в порах они обычно обладают электрическим зарядом, что оказывает большое влияние на процесс проникновения растворенных частиц через поры.
Мембрана представляет собой элементарную структуру клеток. Мембраны образуют клеточные оболочки и оболочки органоидов клетки. Мембраны различных ор-
130
ганоидов отличаются химическим составом и толщиной. Например, оболочки митохондрий, состоящие из пяти слоев белков и липидов, представляют собой дубликатуру элементарной мембраны.
В некотором отношении очень интересны мембраны лизосом. Как известно, лизосомы содержат ферменты, разлагающие все наиболее важные вещества клетки. Эти ферменты не могут только разлагать и переваривать свою собственную мембрану. При разрушении мембраны лизосом ферменты выходят в цитоплазму и наблюдается явление аутолиза — самопереваривания клетки.
В клетках протекает сложнейшая сеть биохимических превращений, состоящая из тысяч отдельных реакций. Все эти реакции должны быть тем или иным способом отграничены друг от друга. Мембраны производят деление клетки на отдельные участки, фазы, где и протекают различные реакции. И в самом деле, мембрана, как правило, располагается на границе раздела двух фаз: наружная плазматическая мембрана отделяет внутреннюю среду клетки от наружной; мембраны митохондрий отделяют их матрикс от собственной цитоплазмы; мембраны ядра — кариоплазму от цитоплазмы; мембраны цитоплазматического ретикулума — содержимое цистерн от цитоплазмы и т. д. Все эти фазы отличаются друг от друга физико-химическими показателями: рН, концентрацией ионов, наличием ферментов, количеством воды, кислорода и т.д. Благодаря тому что мембраны создают границы раздела, возможно существование многих биохимических реакций.
Помимо того что мембраны создают границы раздела между различными фазами, они принимают непосредственное участие во всех процессах обмена веществ, которые обусловливают жизнедеятельность клеток. Различного рода мембранные структуры в организмах составляют колоссальную поверхность — десятки тысяч квадратных метров. Такая обширная структурная система указывает на ее важное функциональное значение. Во всех мембранных структурах имеются ферментные сиситемы. Во внутренней мембране митохондрий и эндоплазматического ретикулума сосредоточены такиеокистельные ферменты, как дегидрогеназы, флавины, цитохромы. В мембранных образованиях находятся также фосфотазы, ферменты активного переноса веществ (пермеазы), липолитические ферменты.
131
Приведенные данные убедительно свидетельствуют о том, что поверхность мембран представляет собой то место в клетке, где протекает большинство биохимических реакций. На это указывает и тот факт, что фермент АТФ-аза, играющий ключевую роль в обмене веществ, локализован в основном на мембранах (кроме актомиозина, находящегося в саркоплазме).
Наконец, функция мембран заключается еще и в том, что они координируют и регулируют биохимические и биофизические процессы в клетках. Сейчас становится все более очевидным, что мембраны являются своеобразным устройством, воспринимающим сигналы, поступающие извне, и преобразующим их в команды, регулирующие обмен веществ внутри клетки. В выполнении данной функции большое значение имеет такое свойство мембран, как проницаемость. В результате изменения проницаемости меняется скорость поступления и выведения веществ, изменяются стационарные концентрации реагирующих веществ в клетках и, следовательно, скорости биохимических и биофизических процессов. На важное значение проницаемости мембран в регуляции обмена веществ указывает тот факт, что многие гормоны (инсулин, адренокортикотропный гормон, минерало-кортикоиды, антидиуретический гормон) оказывают биологическое действие путем изменения проницаемости клеточных мембран. Некоторые функции мембран более подробно будут рассмотрены в последующих главах.
Нормальное состояние мембран клетки нарушается при многих заболеваниях, в особенности связанных с нарушениями гормонального и витаминного баланса организма. Обнаружены увеличение проницаемости мембран лизосом и выход в цитоплазму лизосомных ферментов при гипервитаминозе А, авитаминозе Е, при гипоксии, действии ионизирующих излучений, стрептолизина, эндотоксинов и т. п. Кортизон и гидрокортизон, напротив, способны стабилизировать мембраны лизосом, что, возможно, является одной из причин противовоспалительного действия этих соединений.