
- •Реконструкция жилых зданий. Часть I. Технологии восстановления эксплуатационной надежности жилых зданий
- •Глава 1 объемно-планировочные и конструктивные решения реконструируемых жилых зданий
- •§ 1.1. Роль реконструкции зданий в решении социально-экономических и градостроительных задач
- •§ 1.2. Градостроительные аспекты реконструкции жилой застройки
- •§ 1.3. Характеристика жилищного фонда старой постройки
- •§ 1.4. Объемно-планировочные и конструктивные решения домов первых массовых серий
- •§ 1.5. Жизненный цикл зданий
- •§ 1.6. Моделирование процесса физического износа зданий
- •§ 1.7. Условия продления жизненного цикла зданий
- •§ 1.8. Основные положения по реконструкции жилых зданий различных периодов постройки
- •Глава 2 инженерные методы диагностики технического состояния конструктивных элементов зданий
- •§ 2.1. Общие положения
- •§ 2.2. Физический и моральный износ зданий
- •§ 2.3. Методы обследования состояния зданий и конструкций
- •§ 2.4. Инструментальные средства контроля технического состояния зданий
- •§ 2.5. Определение деформаций зданий
- •§ 2.6. Дефектоскопия конструкций
- •§ 2.7. Дефекты крупнопанельных зданий
- •§ 2.8. Статистические методы оценки состояния конструктивных элементов зданий
- •Глава 3 методы реконструкции жилых зданий
- •§ 3.1. Общие принципы реконструкции жилых зданий
- •§ 3.2. Архитектурно-планировочные приемы при реконструкции жилых зданий ранней постройки
- •§ 3.3. Конструктивно-технологические решения при реконструкции жилых зданий старой постройки
- •§ 3.4. Методы реконструкции малоэтажных жилых зданий первых массовых серий
- •§ 3.5. Конструктивно-технологические решения при реконструкции зданий первых массовых серий
- •Глава 4 математические методы оценки надежности и долговечности реконструируемых зданий
- •§ 4.1. Физическая модель надежности реконструируемых зданий
- •§ 4.2. Основные понятия теории надежности
- •§ 4.3. Основная математическая модель для изучения надежности зданий
- •§ 4.4. Методы оценки надежности зданий с помощью математических моделей
- •§ 4.5. Асимптотические методы в оценке надежности сложных систем
- •§ 4.6. Оценка среднего времени до возникновения отказа
- •§ 4.7. Иерархические модели надежности
- •§ 4.8. Пример оценки надежности реконструируемого здания
- •Глава 5 основные положения технологии и организации реконструкции зданий
- •§ 5.1. Общая часть
- •§ 5.2. Технологические режимы
- •§ 5.3. Параметры технологических процессов при реконструкции зданий
- •§ 5.4. Подготовительные работы
- •§ 5.5. Механизация строительных процессов
- •§ 5.6. Технологическое проектирование
- •§ 5.7. Проектирование технологических процессов реконструкции зданий
- •§ 5.8. Календарные планы и сетевые графики
- •§ 5.9. Организационно-технологическая надежность строительного производства
- •Глава 6 технология производства работ по повышению и восстановлению несущей и эксплуатационной способности конструктивных элементов зданий
- •§ 6.1. Технологии укрепления оснований
- •§ 6.1.1. Силикатизация грунтов
- •§ 6.1.2. Закрепление грунтов цементацией
- •§ 6.1.3. Электрохимическое закрепление грунтов
- •§ 6.1.4. Восстановление оснований фундаментов с карстовыми образованиями
- •§ 6.1.5. Струйная технология закрепления грунтов оснований фундаментов
- •§ 6.2. Технологии восстановления и усиления фундаментов
- •§ 6.2.1. Технология усиления ленточных фундаментов монолитными железобетонными обоймами
- •§ 6.2.2. Восстановление несущей способности ленточных фундаментов методом торкретирования
- •§ 6.2.3. Усиление фундаментов сваями
- •§ 6.2.4. Усиление фундаментов буроинъекционными сваями с электроимпульсным уплотнением бетона и грунтов
- •§ 6.2.5. Усиление фундаментов сваями в раскатанных скважинах
- •§ 6.2.6. Усиление фундаментов многосекционными сваями, погружаемыми методом вдавливания
- •§ 6.3. Усиление фундаментов с устройством монолитных плит
- •§ 6.4. Восстановление водонепроницаемости и гидроизоляции элементов зданий
- •§ 6.4.1. Вибрационная технология устройства жесткой гидроизоляции
- •§ 6.4.2. Восстановление гидроизоляции инъецированием кремнийорганических соединений
- •§ 6.4.3. Восстановление наружной вертикальной гидроизоляции стен фундаментов
- •§ 6.4.4. Технология повышения водонепроницаемости заглубленных конструкций зданий и сооружений путем создания кристаллизационного барьера
- •§ 6.5. Технология усиления кирпичных стен, столбов,простенков
- •§ 6.6. Технология усиления железобетонных колонн,балок и перекрытий
- •Глава 7 индустриальные технологии замены перекрытий
- •§ 7.1. Конструктивно-технологические решения замены междуэтажных перекрытий
- •§ 7.2. Технология замены перекрытий из мелкоштучных бетонных и железобетонных элементов
- •§ 7.3. Технология замены перекрытий из крупноразмерных плит
- •§ 7.4. Возведение сборно-монолитных перекрытий в несъемной опалубке
- •§ 7.5. Технология возведения монолитных перекрытий
- •§ 7.6. Эффективность конструктивно-технологических решений по замене перекрытий
- •Глава 8 повышение эксплуатационной надежности реконструируемых зданий
- •§ 8.1. Эксплуатационные характеристики ограждающих конструкций
- •§ 8.2. Повышение энергоэффективности ограждающих конструкций
- •§ 8.3. Характеристики теплоизоляционных материалов
- •§ 8.4. Технологии утепления фасадов зданий с изоляцией штукатурными покрытиями
- •§ 8.5. Теплоизоляция стен с устройством вентилируемых фасадов
- •§ 8.6. Технологии устройства вентилируемых фасадов
- •§ 8.7. Оценка эксплуатационной надежности и долговечности утепленных фасадных поверхностей
- •§ 8.8. Управляемые технологии энергопотребления жилых зданий
§ 6.4. Восстановление водонепроницаемости и гидроизоляции элементов зданий
При реконструкции зданий особое внимание должно уделяться процессам восстановления горизонтальной, вертикальной гидроизоляции и водонепроницаемости стен и подвальных помещений. Значение этих работ трудно переоценить, так как нарушение функционирования приводит к постоянной миграции атмосферных осадков и грунтовых вод по поверхностям стен и фундаментам. Скорость миграции как процесса влагопоглощения зависит от состояния конструктивных элементов, их материала, технического состояния, а также уровня воздействий. Например, нарушение горизонтальной гидроизоляции приводит к постоянному увлажнению наружных и внутренних стен, появлению различного рода высолов, потере физико-механических характеристик штукатурных слоев, снижению адгезии с кирпичной кладкой и их разрушению. Постоянное увлажнение несущих конструкций при расположении в зоне отрицательных температурных воздействий способствует постепенным разрушениям, приводящим к потере несущей способности.
Восстановление горизонтальной гидроизоляции
Восстановление горизонтальной гидроизоляции является весьма ответственным и трудоемким процессом. В большинстве случаев многооперационные процессы восстановления горизонтальной гидроизоляции проводятся в стесненных условиях, требуют больших затрат ручного труда, мало механизированы.
Анализ отечественного и зарубежного опыта показывает, что наряду с традиционными и трудозатратными методами ведения работ осваиваются более прогрессивные, обеспечивающие достаточную степень надежности и долговечности, а использование высокоэффективного и производительного ручного инструмента позволяет снизить до минимума трудоемкость работ. Особое место при этом отводится нетрадиционным способам устройства гидроизоляции, что является результатом внедрения достижений научно-технического прогресса в область технологии реконструктивных работ.
§ 6.4.1. Вибрационная технология устройства жесткой гидроизоляции
Наиболее прогрессивным и технологически эффективным следует считать метод установки жесткой гидроизоляции с использованием вибрационной технологии. Она основана на разрушении материала шва кирпичной кладки или стыка панелей под действием высокочастотной вибрации или виброударных воздействий. При этом вибрационное или виброударное воздействие передается через гофрированную пластину, которая после разрушения материала оставляется в разрабатываемой полости и служит жесткой гидроизоляцией.
На рис. 6.35 приведена технологическая схема производства работ. Оборудованием для ведения работ служит вибрационный агрегат с частотой колебаний 200 Гц и амплитудой 0,1-0,3мм. Использование горизонтально направленных гармонических колебаний обеспечивает эффективное разрушение материала шва и проникновение пластины.После прохождения 3/4-4/5 глубины резания осуществляется ручная добивка гофрированной пластины до проектного положения. Установка очередной пластины осуществляется последовательно за предыдущей с обязательным взаимным перекрытием не менее чем на 2 паза.
Рис. 6.35. Вибрационная технология устройства жесткой горизонтальной гидроизоляции а - технологическая схема; б - схема размещения элементов жесткой гидроизоляции в плане: 1 - горизонтальный элемент гидроизоляции; 2 - вибратор направленного действия; 3 - струбцина для крепления с элементами изоляции; 4 - тележка; 5 - кирпичная стена; в - зоны перекрытия элементов жесткой гидроизоляции; г - технологическая эффективность разрушения шва в зависимости от режимов колебаний: 1 -частота 50 Гц, амплитуда 0,5 мм; 2 - то же, 200 Гц; 3 -виброударный режим с частотой 20 Гц
Горизонтально направленная вибрация создает условия виброударного взаимодействия погружаемой пластины и материала шва. Такие режимы существенно повышают технологический эффект,увеличивая скорость погружения пластин.
С целью однородного воздействия на обрабатываемый материал пластина по всей ширине закрепляется с источником колебаний с помощью струбцин, а виброагрегат снабжается виброизолированными рукоятками. При общей массе виброагрегата 6-8 кг обеспечивается ручная работа по устройству жесткой гидроизоляции.
Для обеспечения требуемой долговечности материал жесткой гидроизоляции выполняется из оцинкованной стали толщиной 1,0-1,2 мм или из алюминиевого сплава. Ширина полос составляет 0,4-0,6м при длине, равной толщине изолируемой стены.
В зависимости от физико-механических характеристик материала шва скорость погружения может колебаться в достаточно широких пределах.
На процесс разрушения материала шва существенное влияние оказывают профиль рабочего органа, а также интенсивность вибрационного воздействия. В первом случае гофрированный профиль обеспечивает необходимую жесткость системы, а ее периодический профиль - более интенсивное разрушение материала.
Исследования процесса вибрационного разрушения показали, что эффективность виброударных режимов существенно выше, чем гармонических колебаний. В общем случае интенсивность колебаний оценивается соотношением J = а2 f 3 , где а - амплитуда колебаний, f- частота. Из соотношения следует, что повышение частоты приводит к более высокой интенсивности по сравнению с амплитудой. Поэтому использование вибраторов дебалансного типа с частотой колебаний 200 Гц приводит к достаточно высокой интенсивности при относительно низкой амплитуде колебаний.
Виброударный режим в отличие от гармонических колебаний несет более высокую энергию при более низкой частоте колебаний. Так, при частоте 25-30 Гц и амплитуде колебаний 0,5-0,8 мм эффективность разрушения материала более высокая, чем при гармонических колебаниях с частотой 50, 100 и 200 Гц и амплитудой колебания соответственно1,0; 0,6; 0,3 мм.
Интенсивность колебаний при виброударных режимах может быть оценена зависимостью более сложного вида.
Увеличение прочностных характеристик раствора приводит к некоторому снижению скорости разрушения. Эта зависимость близка к линейной. Установлена некоторая пропорциональность скорости разрушения от механических характеристик растворной части.
Создание эффективного камнерезательного оборудования позволило перенести достижения в этой области на реконструктивные работы. В частности, фирмой Cedima выпускается резательное оборудование в виде дисковых и цепных алмазных пил, обеспечивающих сухую резку железобетонных и каменных конструкций с глубиной реза до 800 мм. Использование алмазного инструмента позволяет существенно интенсифицировать процессы и повысить производительность труда.
Так, ручная алмазная пила 823Н имеет массу рабочего органа 4,6 кг, гидравлический привод с маслостанцией HAG -11 мощностью 7,5 кВт с набором гидрошлангов длиной до 10 м. Она обеспечивает образование прорезей в кирпичной кладке,железобетоне и других материалах с радиусом действия до 10 м. Компактное решение гидропривода на пневмоходу обеспечивает его размещение в зоне производства работ.
Отличительной особенностью данного оборудования является отсутствие недопустимых вибраций и шума.
Для выполнения небольшого объема работ возможно использование гидравлической ручной цепной пилы JCS -823 H с глубиной резания до 450 мм в бетоне, кирпичной кладке и других материалах.