
- •Реконструкция жилых зданий. Часть I. Технологии восстановления эксплуатационной надежности жилых зданий
- •Глава 1 объемно-планировочные и конструктивные решения реконструируемых жилых зданий
- •§ 1.1. Роль реконструкции зданий в решении социально-экономических и градостроительных задач
- •§ 1.2. Градостроительные аспекты реконструкции жилой застройки
- •§ 1.3. Характеристика жилищного фонда старой постройки
- •§ 1.4. Объемно-планировочные и конструктивные решения домов первых массовых серий
- •§ 1.5. Жизненный цикл зданий
- •§ 1.6. Моделирование процесса физического износа зданий
- •§ 1.7. Условия продления жизненного цикла зданий
- •§ 1.8. Основные положения по реконструкции жилых зданий различных периодов постройки
- •Глава 2 инженерные методы диагностики технического состояния конструктивных элементов зданий
- •§ 2.1. Общие положения
- •§ 2.2. Физический и моральный износ зданий
- •§ 2.3. Методы обследования состояния зданий и конструкций
- •§ 2.4. Инструментальные средства контроля технического состояния зданий
- •§ 2.5. Определение деформаций зданий
- •§ 2.6. Дефектоскопия конструкций
- •§ 2.7. Дефекты крупнопанельных зданий
- •§ 2.8. Статистические методы оценки состояния конструктивных элементов зданий
- •Глава 3 методы реконструкции жилых зданий
- •§ 3.1. Общие принципы реконструкции жилых зданий
- •§ 3.2. Архитектурно-планировочные приемы при реконструкции жилых зданий ранней постройки
- •§ 3.3. Конструктивно-технологические решения при реконструкции жилых зданий старой постройки
- •§ 3.4. Методы реконструкции малоэтажных жилых зданий первых массовых серий
- •§ 3.5. Конструктивно-технологические решения при реконструкции зданий первых массовых серий
- •Глава 4 математические методы оценки надежности и долговечности реконструируемых зданий
- •§ 4.1. Физическая модель надежности реконструируемых зданий
- •§ 4.2. Основные понятия теории надежности
- •§ 4.3. Основная математическая модель для изучения надежности зданий
- •§ 4.4. Методы оценки надежности зданий с помощью математических моделей
- •§ 4.5. Асимптотические методы в оценке надежности сложных систем
- •§ 4.6. Оценка среднего времени до возникновения отказа
- •§ 4.7. Иерархические модели надежности
- •§ 4.8. Пример оценки надежности реконструируемого здания
- •Глава 5 основные положения технологии и организации реконструкции зданий
- •§ 5.1. Общая часть
- •§ 5.2. Технологические режимы
- •§ 5.3. Параметры технологических процессов при реконструкции зданий
- •§ 5.4. Подготовительные работы
- •§ 5.5. Механизация строительных процессов
- •§ 5.6. Технологическое проектирование
- •§ 5.7. Проектирование технологических процессов реконструкции зданий
- •§ 5.8. Календарные планы и сетевые графики
- •§ 5.9. Организационно-технологическая надежность строительного производства
- •Глава 6 технология производства работ по повышению и восстановлению несущей и эксплуатационной способности конструктивных элементов зданий
- •§ 6.1. Технологии укрепления оснований
- •§ 6.1.1. Силикатизация грунтов
- •§ 6.1.2. Закрепление грунтов цементацией
- •§ 6.1.3. Электрохимическое закрепление грунтов
- •§ 6.1.4. Восстановление оснований фундаментов с карстовыми образованиями
- •§ 6.1.5. Струйная технология закрепления грунтов оснований фундаментов
- •§ 6.2. Технологии восстановления и усиления фундаментов
- •§ 6.2.1. Технология усиления ленточных фундаментов монолитными железобетонными обоймами
- •§ 6.2.2. Восстановление несущей способности ленточных фундаментов методом торкретирования
- •§ 6.2.3. Усиление фундаментов сваями
- •§ 6.2.4. Усиление фундаментов буроинъекционными сваями с электроимпульсным уплотнением бетона и грунтов
- •§ 6.2.5. Усиление фундаментов сваями в раскатанных скважинах
- •§ 6.2.6. Усиление фундаментов многосекционными сваями, погружаемыми методом вдавливания
- •§ 6.3. Усиление фундаментов с устройством монолитных плит
- •§ 6.4. Восстановление водонепроницаемости и гидроизоляции элементов зданий
- •§ 6.4.1. Вибрационная технология устройства жесткой гидроизоляции
- •§ 6.4.2. Восстановление гидроизоляции инъецированием кремнийорганических соединений
- •§ 6.4.3. Восстановление наружной вертикальной гидроизоляции стен фундаментов
- •§ 6.4.4. Технология повышения водонепроницаемости заглубленных конструкций зданий и сооружений путем создания кристаллизационного барьера
- •§ 6.5. Технология усиления кирпичных стен, столбов,простенков
- •§ 6.6. Технология усиления железобетонных колонн,балок и перекрытий
- •Глава 7 индустриальные технологии замены перекрытий
- •§ 7.1. Конструктивно-технологические решения замены междуэтажных перекрытий
- •§ 7.2. Технология замены перекрытий из мелкоштучных бетонных и железобетонных элементов
- •§ 7.3. Технология замены перекрытий из крупноразмерных плит
- •§ 7.4. Возведение сборно-монолитных перекрытий в несъемной опалубке
- •§ 7.5. Технология возведения монолитных перекрытий
- •§ 7.6. Эффективность конструктивно-технологических решений по замене перекрытий
- •Глава 8 повышение эксплуатационной надежности реконструируемых зданий
- •§ 8.1. Эксплуатационные характеристики ограждающих конструкций
- •§ 8.2. Повышение энергоэффективности ограждающих конструкций
- •§ 8.3. Характеристики теплоизоляционных материалов
- •§ 8.4. Технологии утепления фасадов зданий с изоляцией штукатурными покрытиями
- •§ 8.5. Теплоизоляция стен с устройством вентилируемых фасадов
- •§ 8.6. Технологии устройства вентилируемых фасадов
- •§ 8.7. Оценка эксплуатационной надежности и долговечности утепленных фасадных поверхностей
- •§ 8.8. Управляемые технологии энергопотребления жилых зданий
§ 2.5. Определение деформаций зданий
Под воздействием постоянных и переменных нагрузок в зданиях могут возникать деформации. Они подразделяются на местные, когда перемещения, прогибы или повороты происходят в узлах и конструкциях,и общие, когда перемещается и деформируется здание в целом. В свою очередь,деформации могут быть остаточными и упругими, исчезающими при снятии нагрузки.
Для измерения местных деформаций используются различные системы прогибомеров и индикаторы часового типа.
Общие деформации здания являются следствием просчетов в подборе фундаментов, что приводит к неравномерной осадке различных частей здания, а также к нарушениям эксплуатационного режима -замачиванию грунтов вследствие аварии сетей водо- и теплоснабжения, изменению гидрогеологических условий.
Для измерения осадок, кренов,смещений зданий используют методы инженерной геодезии. Смысл диагностики заключается в сопоставлении отметок реперов и осадочных марок. Реперы закладываются на такую глубину, чтобы их основанием служили практически несжимаемые грунты. Их располагают вокруг здания на расстоянии 30-100 м.
Осадочные марки устанавливают в фундаменты по периметру здания. Положение их осей выносят на стены и фиксируют несмываемой краской. С помощью нивелирования определяют характер общих осадок для различных участков здания (рис. 2.11).
Рис. 2.11. Схемы определения осадки зданий и кренов а - схема регистрации осадки здания: Роп - опорные репера; ОМ - осадочные марки; б ,в - определение крена здания методом измерения горизонтальных углов: А , А1- центры знаков на расстоянии 30-50 м от здания; С, С 1 - удаленные знаки; В -марка на верхней части здания; g , g 1 - измеряемые углы
Крены зданий фиксируют боковым нивелированием или измерением горизонтальных углов. Использование клинометров и кренометров позволяет получить более точные характеристики деформаций. Для измерения наклонов используют точные уровни с измерительным винтом.
Линейная величина частных кренов, мм, определяется по зависимостям (рис. 2.8,б)
где g , g 1 - приращение угла в одну сторону; L , L 1 - расстояние от сооружения до знака; r- коэффициент перевода углов в линейное значение.
Измерение сдвигов зданий осуществляется с помощью теодолита. При этом боковое смещение измеряют от прямых линий, фиксируемых вдоль периметра здания. В качестве линии отсчета используют струну или лазерный луч.
Более точным средством регистрации деформаций является метод фотограмметрии, который позволяет получать графическое изображение объекта с параметрами отклонений различных его точек.
Особое внимание при диагностике технического состояния зданий отводится оценке геометрического положения несущих и ограждающих конструкций, узлов и сопряжений, деформаций в виде прогибов, угловых смещений и т.п. Эти параметры измеряются традиционными методами и сравниваются с допустимыми значениями.
В местах, неудобных для геометрического нивелирования из-за стесненности условий работ, используется гидростатическое нивелирование. Гидростатический прибор подвешивается к высотным маркам и по разности отсчетов по соседним трубкам определяется величина превышений. Точность измерений составляет 0,1 мм.
После регистрации деформаций отдельных конструкций производят сравнение с допустимыми значениями (табл.2.4).
Таблица 2.4
Значение предельно допустимых прогибов
№ п.п. |
Элементы конструкций |
Предельно допустимые прогибы |
1 |
Железобетонные перекрытия с плоским потолком при пролете, м: |
|
|
l < 6 |
1/200 |
|
6 < l < 7,5 |
3 см |
|
l > 7,5 |
1/250 |
2 |
Перекрытия с ребристым потолком, м: |
|
|
l < 5 |
1/200 |
|
5 < l < 10 |
2,5 см |
|
l > 10 |
1/400 |
3 |
Металлические балки перекрытий при пролете, м: |
|
|
l < 6 |
1/250 |
|
6 < l < 7,5 |
2 см |
|
7,5 < l < 10 |
1/400 |
4 |
Стеновые панели самонесущие при пролете, м: |
|
|
l < 6 |
1/200 |
|
6 < l < 7,5 |
3 см |
|
l > 7,5 |
1/250 |
Данные измерений деформаций представляют в виде исполнительной схемы и журнала изменений. Они используются для составления заключения о техническом состоянии здания.